Answer:
The drag coefficient is
Explanation:
From the question we are told that
The density of air is 
The diameter of bottom part is
The power trend-line equation is mathematically represented as

let assume that the velocity is 20 m/s
Then


The drag coefficient is mathematically represented as

Where
is the drag force
is the density of the fluid
is the flow velocity
A is the area which mathematically evaluated as

substituting values


Then

The force acting on the object is constant, so the acceleration of the object is also constant. By definition of average acceleration, this acceleration was
<em>a</em> = ∆<em>v</em> / ∆<em>t</em> = (6 m/s - 0) / (1.7 s) ≈ 3.52941 m/s²
By Newton's second law, the magnitude of the force <em>F</em> is proportional to the acceleration <em>a</em> according to
<em>F</em> = <em>m a</em>
where <em>m</em> is the object's mass. Solving for <em>m</em> gives
<em>m</em> = <em>F</em> / <em>a</em> = (10 N) / (3.52941 m/s²) ≈ 2.8 kg
By conservation of momentum,
Distance lighter fragment slide= 7*6.7=46.9m
The best answer is letter (A) a double pulley system. Atwood Machine is normally used as a measurement in balancing to object to verify the mechanical law of motion with constant acceleration.