Answer:
Table 3
X. 1,3,4,5
Y. 50,150,200,250
Step-by-step explanation:
we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form or
<u><em>Verify each table</em></u>
Find the value of k for each ordered pair
If the value of k is the same for all ordered pairs, then the table represents a proportional relationship.
If the k-value is different for any of the ordered pairs, then the table does not represent a proportional relationship
<em>Table 1</em>
For x=2, y=6 ---> ---->
For x=4, y=12 ---> ---->
For x=5, y=18 ---> ---->
The values of k are different
therefore
The table 1 not represent a proportional relationship
<em>Table 2</em>
For x=3, y=1.5 ---> ---->
For x=5, y=2.5 ---> ---->
For x=7, y=3 ---> ---->
The values of k are different
therefore
The table 2 not represent a proportional relationship
<em>Table 3</em>
For x=1, y=50 ---> ---->
For x=3, y=150 ---> ---->
For x=4, y=200 ---> ---->
For x=5, y=250 ---> ---->
The values of k are the same
therefore
The table 3 represent a proportional relationship
<em>Table 4</em>
For x=1, y=1.5 ---> ---->
For x=2, y=3 ---> ---->
For x=3, y=6 ---> ---->
The values of k are different
therefore
The table 4 not represent a proportional relationship