1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
iogann1982 [59]
3 years ago
11

A saving account pays 2% interest compounded annually. If $1,200 is deposited initially and again at the first of each year,how

much money will be in the account three years after the initial deposit
Mathematics
2 answers:
Angelina_Jolie [31]3 years ago
5 0

3(1.02(1200))

3.06(1200) = 3672

You will have $3672

julia-pushkina [17]3 years ago
5 0

Answer:

The balance after 3 years will be $3745.93.

Step-by-step explanation:

The rate of interest = 2% or 0.02

p = 1200

t = 3

n = 1

1st year:

Compound interest formula is :

p(1+r/n)^{nt}

= 1200(1+0.02/1)^{3}

= 1200(1.02)^{3}

= $1273.45

2nd year:

1200(1+0.02)^{2}

= 1200(1.02)^{2}

=$1248.48

3rd year:

1200(1+0.02)^{1}

= 1200(1.02)^{1}

=$1224

So, total amount will be = 1273.45+1248.48+1224=3745.93 dollars

The balance after 3 years will be $3745.93.

You might be interested in
I need help this is hard please help me
Mademuasel [1]

Answer:

P(t)=25000+1.12t

Step-by-step explanation:

Now can you help me?

A basketball is thrown upwards. The height f(t), in feet, of the basketball at time t, in seconds, is given by the following function:

f(t) = −16t2 + 16t + 32

Which of the following is a reasonable domain of the graph of the function when the basketball falls from its maximum height to the ground?

3 0
3 years ago
Read 2 more answers
You deposit $500 into a savings account that earns 3.2% annual interest. How much is in the savings account after 10 years?
Brilliant_brown [7]
A = P(1 +r/n)^nt
P = 500
r = 3.2% = 0.032
n = 1
t = 10

A = 500(1 + 0.032)^10
A = $685.12
7 0
2 years ago
How do you get the answer and sketch it to this graft
Katyanochek1 [597]
F(x) = -4(x - 2)² + 2
f(x) = -4((x - 2)(x - 2)) + 2
f(x) = -4(x² - 2x - 2x + 4) + 2
f(x) = -4(x² - 4x + 4) + 2
f(x) = -4(x²) + 4(4x) - 4(4) + 2
f(x) = -4x² + 16x - 16 + 2
f(x) = -4x² + 16x - 14
-4x² + 16x - 14 = 0
x = <u>-16 +/- √(16² - 4(-4)(-14))</u>
                       2(-4)
x = <u>-16 +/- √(256 - 224)</u>
                     -8
x = <u>-16 +/- √(32)
</u>               -8<u>
</u>x = <u>-16 +/- 5.66
</u>              -8<u>
</u>x = <u>-16 + 5.66</u>      x = <u>-16 - 5.66
</u>             -8                         -8<u>
</u>x = <u>-10.34</u>            x = <u>-21.66</u>      
          -8                         -8
x = 1.2925           x = 2.7075
f(x) = -4x² + 16x - 14
f(1.2925) = -4(1.2925)² + 16(1.2925) - 14
f(1,2925) = -4(1.67055625) + 20.68 - 14
f(1.2925) = -6.682225 + 20.68 - 14
f(1.2925) = 13.997775 - 14
f(1.2925) = -0.002225
(x, f(x)) = (1.2925, -0.002225)
or
f(x) = -4x² + 16x - 14
f(2.7075) = -4(2.7075)² + 16(2.7075) - 14
f(2.7075) = -4(7.33055625) + 43.32 - 14
f(2.7075) = -29.322225 + 43.32 - 14
f(2.7075) = 13.997775 - 14
f(2.7075) = -0.002225
(x, f(x)) = (2.7075, -0.002225)
--------------------------------------------------------------------------------------------
f(x) = 2(x - 2)² + 1
f(x) = 2((x - 2)(x - 2)) + 1
f(x) = 2(x² - 2x - 2x + 4) + 1
f(x) = 2(x² - 4x + 4) + 1
f(x) = 2(x²) - 2(4x) + 2(4) + 1
f(x) = 2x² - 8x + 8 + 1
f(x) = 2x² - 8x + 9
2x² - 8x + 9 = 0
x = <u>-(-8) +/- √((-8)² - 4(2)(9))
</u>                      <u />2(2)
x = <u>8 +/- √(64 - 72)</u>
                 4
x = <u>8 +/- √(-8)</u>
             4
x = <u>8 +/- √(8 × (-1))</u>
                 4
x =<u> 8 +/- √(8)√(-1)</u>
                 4
x = <u>8 +/- 2.83i</u>
              4
x = 2 +/- 1.415i
x = 2 + 1.415i      x = 2 - 1.415i
f(x) = 2x² - 8x + 9
f(2 + 1.415i) = 2(2 + 1.415i)² - 8(2 + 1.415i) + 9
f(2 + 1.415i) = 2((2 + 1.415i)(2 + 1.415i)) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 2.83i + 2.83i + 2.00225i²) - 16 - 11.32i + 9
f(2 + 1.415i) = 2(4 + 5.66i + 2.00225) - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 11.32i + 4.0045 - 16 - 11.32i + 9
f(2 + 1.415i) = 8 + 4.0045 - 16 + 9 + 11.32i - 11.32i
f(2 + 1.415i) = 12.0045 - 16 + 9
f(2 + 1.415i) = -3.9955 + 9
f(2 + 1.415i) = 5.0045
(x, f(x)) = (2 + 1.415i, 5.0045)
or
f(x) = 2x² - 8x + 9
f(2 - 1.415i) = 2(2 - 1.415i)² - 8(2 - 1.415i) + 9
f(2 - 1.415i) = 2((2 - 1.415i)(2 - 1.415i)) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 2.83i - 2.83i + 2.00225i²) - 16 + 11.32i + 9
f(2 - 1.415i) = 2(4 - 5.66i + 2.00225) - 16 + 11.32i + 9
f(2 - 1.415i) = 8 - 11.32i + 4.0045 - 16 + 11.32i + 9
f(2 - 1.415i) = 8 + 4.0045 - 16 + 9 - 11.32i + 11.32i
f(2 - 1.415i) = 12.0045 - 16 + 9
f(2 - 1.145i) = -3.9955 + 9
f(2 - 1.415i) = 5.0045
(x, f(x)) = (2 - 1.415i, 5.0045)
--------------------------------------------------------------------------------------------
f(x) = -2(x - 4)² + 8
f(x) = -2((x - 4)(x - 4)) + 8
f(x) = -2(x² - 4x - 4x + 16) + 8
f(x) = -2(x² - 8x + 16) + 8
f(x) = -2(x²) + 2(8x) - 2(16) + 8
f(x) = -2x² + 16x - 32 + 8
f(x) = -2x² + 16x - 24
-2x² + 16x - 24 = 0
x = <u>-16 +/- √(16² - 4(-2)(-24))</u>
                      2(-2)
x = <u>-16 +/- √(256 - 192)</u>
                   -4
x = <u>-16 +/- √(64)</u>
               -4
x = <u>-16 +/- 8</u>
            -4
x = <u>-16 + 8</u>      x = <u>-16 - 8</u>
           -4                   -4
x = <u>-8</u>              x = <u>-24</u>
      -4                     -4
x = 2                x = 6
f(x) = -2x² + 16x - 24
f(2) = -2(2)² + 16(2) - 24
f(2) = -2(4) + 32 - 24
f(2) = -8 + 32 - 24
f(2) = 24 - 24
f(2) = 0
(x,f(x)) = (2, 0)
or
f(x) = -2x² + 16x - 24
f(6) = -2(6)² + 16(6) - 24
f(6) = -2(36) + 96 - 24
f(6) = -72 + 96 - 24
f(6) = 24 - 24
f(6) = 0
(x, f(x)) = (6, 0)
<u />
5 0
3 years ago
What are x and 8 in this lineat equation? 8/x+5=50/25
MatroZZZ [7]

Answer:

x= -8/3

Step-by-step explanation:

4 0
3 years ago
Order from least to greatest 52,701, 54,025, 5, 206
andre [41]

First: 5.

Second: 206.

Third: 52,701.

Fourth: 54,025.

5 0
3 years ago
Other questions:
  • Payment history is ____ of your credit score.
    6·2 answers
  • What is equivalent to 5(3x - 1 )
    9·1 answer
  • 31)
    12·2 answers
  • Find the number of elements in A 1 ∪ A 2 ∪ A 3 if there are 200 elements in A 1 , 1000 in A 2 , and 5, 000 in A 3 if (a) A 1 ⊆ A
    8·1 answer
  • Y = 2 ( x + 3 ) ( x - 4 )
    10·1 answer
  • Can someone just explain in words what I have to do please
    5·2 answers
  • What is the interest on a loan of $7,850 that is borrowed at 6.55% for 18 months?
    9·2 answers
  • What is the following quotient? sqrt6+sqrt11/sqrt5+sqrt3​
    10·1 answer
  • Someone please help ASAP, will give BRAINLIEST to someone who actually gives a accurate answer
    15·1 answer
  • Natasha was thinking of a number. Natasha divides by 5, then adds 11 to get an answer of 11. What was the original number?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!