Find the number of elements in A 1 ∪ A 2 ∪ A 3 if there are 200 elements in A 1 , 1000 in A 2 , and 5, 000 in A 3 if (a) A 1 ⊆ A
2 and A 2 ⊆ A 3 . (b) the sets are pairwise disjoint. (c) There are two elements in common to each pair of sets and one element in all three sets.
1 answer:
Answer:
a. 4600
b. 6200
c. 6193
Step-by-step explanation:
Let
the number of elements in A.
Remember, the number of elements in
satisfies
![n(A_1 \cup A_2 \cup A_3)=n(A_1)+n(A_2)+n(A_3)-n(A_1\cap A_2)-n(A_1\cap A_3)-n(A_2\cap A_3)-n(A_1\cap A_2 \cap A_3)](https://tex.z-dn.net/?f=n%28A_1%20%5Ccup%20A_2%20%5Ccup%20A_3%29%3Dn%28A_1%29%2Bn%28A_2%29%2Bn%28A_3%29-n%28A_1%5Ccap%20A_2%29-n%28A_1%5Ccap%20A_3%29-n%28A_2%5Ccap%20A_3%29-n%28A_1%5Ccap%20A_2%20%5Ccap%20A_3%29)
Then,
a) If
, and if ![A_2\subseteq A_3, n(A_2\cap A_3)=n(A_2)=1000](https://tex.z-dn.net/?f=A_2%5Csubseteq%20A_3%2C%20n%28A_2%5Ccap%20A_3%29%3Dn%28A_2%29%3D1000)
Since ![A_1\subseteq A_2\; and \; A_2\subseteq A_3, \; then \; A_1\cap A_2 \cap A_3= A_1](https://tex.z-dn.net/?f=A_1%5Csubseteq%20A_2%5C%3B%20and%20%5C%3B%20A_2%5Csubseteq%20A_3%2C%20%5C%3B%20then%20%5C%3B%20A_1%5Ccap%20A_2%20%5Ccap%20A_3%3D%20A_1)
So
![n(A_1 \cup A_2 \cup A_3)=\\=n(A_1)+n(A_2)+n(A_3)-n(A_1\cap A_2)-n(A_1\cap A_3)-n(A_2\cap A_3)-n(A_1\cap A_2 \cap A_3)=\\=200+1000+5000-200-200-1000-200=4600](https://tex.z-dn.net/?f=n%28A_1%20%5Ccup%20A_2%20%5Ccup%20A_3%29%3D%5C%5C%3Dn%28A_1%29%2Bn%28A_2%29%2Bn%28A_3%29-n%28A_1%5Ccap%20A_2%29-n%28A_1%5Ccap%20A_3%29-n%28A_2%5Ccap%20A_3%29-n%28A_1%5Ccap%20A_2%20%5Ccap%20A_3%29%3D%5C%5C%3D200%2B1000%2B5000-200-200-1000-200%3D4600)
b) Since the sets are pairwise disjoint
![n(A_1 \cup A_2 \cup A_3)=\\n(A_1)+n(A_2)+n(A_3)-n(A_1\cap A_2)-n(A_1\cap A_3)-n(A_2\cap A_3)-n(A_1\cap A_2 \cap A_3)=\\200+1000+5000-0-0-0-0=6200](https://tex.z-dn.net/?f=n%28A_1%20%5Ccup%20A_2%20%5Ccup%20A_3%29%3D%5C%5Cn%28A_1%29%2Bn%28A_2%29%2Bn%28A_3%29-n%28A_1%5Ccap%20A_2%29-n%28A_1%5Ccap%20A_3%29-n%28A_2%5Ccap%20A_3%29-n%28A_1%5Ccap%20A_2%20%5Ccap%20A_3%29%3D%5C%5C200%2B1000%2B5000-0-0-0-0%3D6200)
c) Since there are two elements in common to each pair of sets and one element in all three sets, then
![n(A_1 \cup A_2 \cup A_3)=\\=n(A_1)+n(A_2)+n(A_3)-n(A_1\cap A_2)-n(A_1\cap A_3)-n(A_2\cap A_3)-n(A_1\cap A_2 \cap A_3)=\\=200+1000+5000-2-2-2-1=6193](https://tex.z-dn.net/?f=n%28A_1%20%5Ccup%20A_2%20%5Ccup%20A_3%29%3D%5C%5C%3Dn%28A_1%29%2Bn%28A_2%29%2Bn%28A_3%29-n%28A_1%5Ccap%20A_2%29-n%28A_1%5Ccap%20A_3%29-n%28A_2%5Ccap%20A_3%29-n%28A_1%5Ccap%20A_2%20%5Ccap%20A_3%29%3D%5C%5C%3D200%2B1000%2B5000-2-2-2-1%3D6193)
You might be interested in
Answer:
206.625
Step-by-step explanation:
Answer:
ummm where is the question anyway?
Answer: 25%
Step-by-step explanation:
Boy =50%
Girl =50%
Girl + Girl =25%