<span>Resistance of automobile light is equal to 12 ohms.
</span>Resistance = Voltage / Current
where
Voltage = 12 volts
Current = 1.0 Amperes
Resistance = 12 volts/ 1.0 amperes
Resistance = 12 ohms.
Automobile light has 12 ohms resistance when it is connected to 12volts battery with 1.0 ampere current.
Answer:

Explanation:
The electric field is defined as the electric force per unit of charge, this is:
.
The electric force can be obtained through Coulomb's law, which states that the electric force between to electrically charged particles is inversely proportional to the square of the distance between them and directly proportional to the product of their charges. The electric force can be expressed as
.
By substitution we get that

Now, letting
be the electric field at point A, letting
be the electric field at point B, and letting R be the distance from the charge to A:
.
The ration of the electric fields is

This means that at half the distance, the electric field is four times stronger.
Answer:
1.0 M HNO3 at 40<em>°C</em>
Explanation:
Rate of chemical reaction: This can be defined as the number of moles of reactant, converted or product formed per unit time.
Factors that affect rate of chemical reaction:
(a) Temperature: Generally, an increase in temperature increase the rate of chemical reaction by (1) increasing the number of particles with energy equal to or greater than the activation energy, (2) Increasing the average speed of all the reactant particles, due to greater kinetic energy, leading to higher frequency of collision.
(b) Concentration: An increase or decrease in the concentration of the reactant will result to a corresponding increase or decrease in the effective collision of the reactant and hence in the reaction rate.
other factors that affect the rate of chemical reaction are
(i) Nature of the reactant
(ii) Surface area of reactant
(iii) presence of light
(iv) presence of catalyst.
From the question above,
<em>The condition with the highest temperature and concentration will produce the GREATEST reaction rate.</em>
<em>And that is 1.0 M HNO3 at 40 °C</em>
Answer:
Explanation:
Given an RL circuit
A voltage source of.
V = 108V
A resistor of resistance
R = 1.1-kΩ = 1100 Ω
And inductor of inductance
L = 34 H
After he inductance has been fully charged, the switch is open and it connected to the resistor in their own circuit, so as to discharge the inductor
A. Time the inductor current will reduce to 12% of it's initial current
Let the initial charge current be Io
Then, final current is
I = 12% of Io
I = 0.12Io
I / Io = 0.12
The current in an inductor RL circuit is given as
I = Io ( 1—exp(-t/τ)
Where τ is time constant and it is given as
τ = L/R = 34/1100 = 0.03091A
So,
I = Io ( 1—exp(-t/τ))
I / Io = ( 1—exp(-t/τ))
Where I/Io = 0.12
0.12 = 1—exp(-t/τ)
0.12 — 1 = —exp(-t/τ)
-0.88 = -exp(-t/0.03091)
0.88 = exp(-t/0.03091)
Take In of both sides
In(0.88) = In(exp(-t/0.03091)
-0.12783 = -t/0.030901
t = -0.12783 × 0.030901
t = 3.95 × 10^-3 seconds
t = 3.95 ms
B. Energy stored in inductor is given as
U = ½Li²
So, the current at this time t = 3.95ms
I = Io ( 1—exp(-t/τ))
Where Io = V/R
Io = 108/1100 = 0.0982 A
Now,
I = Io ( 1—exp(-t/τ))
I = 0.0982(1 — exp(-3.95 × 10^-3 / 0.030901))
I = 0.0982(1—exp(-0.12783)
I = 0.0982 × 0.12
I = 0.01178
I = 11.78mA
Therefore,
U = ½Li²
U = ½ × 34 × 0.01178²
U = 2.36 × 10^-3 J
U = 2.36 mJ