Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.

The given reaction equation is as follows.

This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.

Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane,
.
Answer:
The empirical formula is the simplest ratio of atoms while molecular is the actual formula.
Explanation:
Empirical Formula is the simplest ratio of atoms present in the compound.
The molecular formula shows the actual number of atoms present in the compound.
For example, CH is the empirical formula and C6H6 is the molecular formula of benzene.
Given :
Volume , V = 500 mL .
Molarity , M = 0.5 M .
Molecular mass of NaCl is
.
To Find :
How many grams of NaCl is required .
Solution :
Let , NaCl required is x gram .
Molarity is given by :

Hence , this is the required solution.
Show the two (neutral) organic starting materials that would be used to synthesize the following ketone by a hydroxide mediated crossed‑aldol reaction the product formed is alpha-beta unsaturated carbonyl compound.
<h3>What is the Aldol-condensation ?</h3>
The condensation response among distinctive molecules of an aldehyde or ketone in a protic solvent which includes water or alcohol constitutes the crossed aldol response. When condensation is among distinctive carbonyl compounds, it's far referred to as crossed aldol condensation.
Applying the retrosynthetic evaluation technique, the systems of the beginning substances are decided via way of means of the usage of the bottom catalyzed for the crossed aldol mechanism. The beginning substances are aldehyde and ketone compounds that react with every different to present the goal molecule.
Read more about the aldehyde :
brainly.com/question/1792281
#SPJ4
Answer:
The artifact is 570 years old. That is, 5.7 × 10² years.
Explanation:
Radioactive decay follows first order reaction kinetics.
Let the initial activity for fresh Carbon-14 be A₀
And the activity at any other time be A
The rate of radioactive decay is given by
dA/dt = - KA
dA/A = - kdt
Integrating the left hand side from A₀ to A₀/2 and the right hand side from 0 to t(1/2) (where t(1/2) is the radioactive isotope's half life)
In [(A₀/2)/A₀] = - k t(1/2)
In (1/2) = - k t(1/2)
- In 2 = - k t(1/2)
k = (In 2)/t₍₁,₂₎
t(1/2) is given in the question to be 5.73 × 10³ years
k = (In 2)/5730 = 0.000121 /year
dA/A = - kdt
Integrating the left hand side from A₀ to A and the right hand side from 0 to t
In (A/A₀) = - kt
A/A₀ = e⁻ᵏᵗ
A = A₀ e⁻ᵏᵗ
A = 2.8 × 10³ Bq.
A₀ = 3.0 × 10³ Bq.
2.8 × 10³ = 3.0 × 10³ e⁻ᵏᵗ
0.9333 = e⁻ᵏᵗ
e⁻ᵏᵗ = 0.9333
-kt = In 0.9333
- kt = - 0.06899
t = 0.06899/0.000121 = 570.2 years = 5.7 × 10² years