when the metal is lost heat and the calorimeter of water is gained the heat
and when the heat lost = the heat gained so,
(M*C*ΔT)m = (M*C*ΔT)w
when Mm= mass of the metal = 30 g
Δ Tm = (80-25) = 55 °C
and Mw = mass of water = 100 g
Cw is the specific heat of water = 4.181 J/g.°C
ΔTw = (25-20) = 5 °C
so by substitution:
∴ 30* Cm*55 = 100 * 4.181 * 5
∴Cm (specific heat of metal) = (100*4.181*5)/(30*55)
∴C of metal = 1.267 J/g.°C
The correct answer is option B. The amphibian and mosses belonged to the same age.
Since the rocks belong to the same age and one contain fossils of an amphibian and the other containing fossils of mosses, it is very likely that both the amphibian and the mosses existed at the same time.
Sedimentary rocks generally have fossils in them and it is very easy to determine the age of the fossils from Radiometric Dating using radioactive carbon C¹⁴. However, before the complete understanding of radioactive decay fossil, age was determined by studying the succession of fossils on old to younger sedimentary rocks.
Answer:
A. It will shift to the left
Explanation:
In the equilibrium:
C(s) ⇄ CO2(g)2CO(g)
The system will shift to the right if any change stimulate the production of gas -LeChatelier's principle-; in the same way, if a change doesn't favors the production of gas the system will shift to the left producing less gas.
The changes that increasing the pressure of the system, doesn't favors the gas production doing the system shift to the left.
A gas that is heated expands itsellf doing the pressure increases.
In the same way, if you compress the gas, the gas increases its pressure.
Thus, both changes increase pressure of the gas doing the system shift to the left.
<h3>A. It will shift to the left
</h3>