<span>1. </span>To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
V2 = P1 x V1 / P2
V2 = 203 x 40.0 / 35.0
V2 =232 L
I think it is but it is artificial but still real and is still a mineral
hope this helps ∞
Multiply velocity and time and you get 0.644 km, but remember that displacement has a direction and so does velocity, so because velocity is positive in the direction that the falcon is going you have a positive displacement.
D represents ion-dipole forces that are stronger than the force C.
Explanation:
D represents the ion-dipole force.
C represents the H-bonding forces.
ion-dipole force is a force that is due to electrostatic attraction and has a dipole between an ion and a neutral molecule.
It is electrostatic in nature.
A hydrogen bond is the force between the hydrogen with the electro negative atom of one molecule, to electro negative atom of some other molecule. such as: O, F, N
Ion dipole force is stronger than the H-bonding.
Answer:
18.8 g
Explanation:
The equation of the reaction is;
AgClO3(aq) + LiBr(aq)------>LiClO3(aq) + AgBr(s)
Number of moles of AgClO3 = 117.63 g/191.32 g/mol = 0.6 moles
Number of moles of LiBr = 10.23 g/86.845 g/mol = 0.1 moles
Since the molar ratio is 1:1, LiBr is the limiting reactant
Molar mass of solid AgBr = 187.77 g/mol
Mass of precipitate formed = 0.1 moles * 187.77 g/mol
Mass of precipitate formed = 18.8 g