I believe it is because the salt supports the weight of the egg
The answer is D
Explanation:
To solve this exercise, we will first proceed to calculate the electric force given by the charge between the proton and the electron (it). From the Force we will use Newton's second law that will allow us to find the acceleration of objects. The Coulomb force between two charges is given as

Here,
k = Coulomb's constant
q = Charge of proton and electron
r = Distance
Replacing we have that,


The force between the electron and proton is calculated. From Newton's third law the force exerted by the electron on proton is same as the force exerted by the proton on electron.
The acceleration of the electron is given as



The acceleration of the proton is given as,



Answer:
50 m
Explanation:
F = ma
10 N = (10 kg) a
a = 1 m/s²
Given:
v₀ = 0 m/s
a = 1 m/s²
t = 10 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (0 m/s) (10 s) + ½ (1 m/s²) (10 s)²
Δx = 50 m
When the body is at rest, its speed is zero, and the graph lies on the x-axis.
When the body is in uniform motion, the speed is constant, and the graph is a horizontal line, parallel to the x-axis and some distance above it.
It's impossible to tell, based on the given information, how these two parts of the
graph are connected. There must be some sloping (accelerated) portion of the graph
that joins the two sections, but it cannot be accounted for in either the statement
that the body is at rest or that it is in uniform motion, since acceleration ... that is,
any change of speed or direction ... is not 'uniform' motion'.