-1/5 + 1/2 u = -2/3
-6/30 + 15/30 u = -20/30
+6/30 +6/60
___________________
15/30 u = -14/30
(15/30 u = -14/30) ÷ (15/30)
u = -14/15
u = -.933
Answer:
AB ≈ 15.7 cm, BC ≈ 18.7 cm
Step-by-step explanation:
(1)
Using the Cosine rule in Δ ABD
AB² = 12.4² + 16.5² - (2 × 12.4 × 16.5 × cos64° )
= 153.76 + 272.25 - (409.2 cos64° )
= 426.01 - 179.38
= 246.63 ( take the square root of both sides )
AB =
≈ 15.7 cm ( to 1 dec. place )
(2)
Calculate ∠ BCD in Δ BCD
∠ BCD = 180° - (53 + 95)° ← angle sum in triangle
∠ BCD = 180° - 148° = 32°
Using the Sine rule in Δ BCD
=
=
( cross- multiply )
BC × sin32° = 12.4 × sin53° ( divide both sides by sin32° )
BC =
≈ 18.7 cm ( to 1 dec. place )
If Eli spends $392 for 8 gigabytes of memory, then

, where g is a gigabyte of memory. All you have to do is to reduce the equation. In this case, divide both sides by 8 to get

. So the cost of 1 gigabyte of memory is $49.
Answer:
5 rooms
Step-by-step explanation:
7.5 divided by 1.5 is equal to 5

now, by traditional method, as "x" progresses towards the positive infinitity, it becomes 100, 10000, 10000000, 1000000000 and so on, and notice, the limit of the numerator becomes large.
BUT, notice the denominator, for the same values of "x", the denominator becomes larg"er" than the numerator on every iteration, ever becoming larger and larger, and yielding a fraction whose denominator is larger than the numerator.
as the denominator increases faster, since as the lingo goes, "reaches the limit faster than the numerator", the fraction becomes ever smaller an smaller ever going towards 0.
now, we could just use L'Hopital rule to check on that.

notice those derivatives atop and bottom, the top is static, whilst the bottom is racing away to infinity, ever going towards 0.