For this case we have that by definition, the equation of the line of the slope-intersection form is given by:
![y = mx + b](https://tex.z-dn.net/?f=y%20%3D%20mx%20%2B%20b)
Where:
m: It's the slope
b: It is the cut-off point with the y axis
According to the statement we have the following equation:
![y = \frac {1} {3} x + 4](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%20%7B1%7D%20%7B3%7D%20x%20%2B%204)
Where:
![m = \frac {1} {3}](https://tex.z-dn.net/?f=m%20%3D%20%5Cfrac%20%7B1%7D%20%7B3%7D)
By definition, if two lines are parallel then their slopes are equal.
Thus, the second equation will be of the form:
![y = \frac {1} {3} x + b](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%20%7B1%7D%20%7B3%7D%20x%20%2B%20b)
We substitute the given point and find "b":
![-5 = \frac {1} {3} (0) + b\\b = -5](https://tex.z-dn.net/?f=-5%20%3D%20%5Cfrac%20%7B1%7D%20%7B3%7D%20%280%29%20%2B%20b%5C%5Cb%20%3D%20-5)
Finally, the equation is:
![y = \frac {1} {3} x-5](https://tex.z-dn.net/?f=y%20%3D%20%5Cfrac%20%7B1%7D%20%7B3%7D%20x-5)
Answer:
Option D