So k=1000 like 4k=4 000 so 6/7 of a thousnad =0.857142857 so times 6=0.857142857
In an arithmetic sequence:
Tn=t₁+(n-1)d
t₄=t₁+(4-1)d=t₁+3d
t₅=t₁+(5-1)d=t₁+4d
t₆=t₁+(6-1)d=t₁+5d
t₄+t₅+t₆=(t₁+3d) +(t₁+4d)+(t₁+5d)=3t₁+12d
Therefore:
3t₁+12d=300 (1)
t₁₅=t₁+(15-1)d=t₁+14d
t₁₆=t₁+(16-1)d=t₁+15d
t₁₇=t₁+(17-1)d=t₁+16d
t₁₅+t₁₆+t₁₇=(t₁+14d)+(t₁+15d)+(t₁+16d)=3t₁+45d
Therefore:
3t₁+45d=201 (2)
With the equations (1) and (2) we make an system of equations:
3t₁+12d=300
3t₁+45d=201
we can solve this system of equations by reduction method.
3t₁+12d=300
-(3t₁+45d=201)
-----------------------------
-33d=99 ⇒d=99/-33=-3
3t₁+12d=300
3t₁+12(-3)=300
3t₁-36=300
3t₁=300+36
3t₁=336
t₁=336/3
t₁=112
Threfore:
Tn=112+(n-1)(-3)
Tn=112-3n+3
Tn=115-3n
Now, we calculate T₁₈:
T₁₈=115-3(18)=115-54=61
Answer: T₁₈=61
Answer:
- The area of the base of the pyramid, B, is 24 cm
- A rectangular prism with the dimensions of 9 cm by 4 cm by 6 cm will have 3 times volume of this pyramid.
Step-by-step explanation:
Volume of a rectangular based pyramid = 1/3{Base area × Height}
Base Area = Length × Breadth
Volume = 1/3{(Length × Breadth) × Height}
Given a rectangular pyramid with a height of 9 centimeters and a base with the dimensions of 4
centimeters by 6 centimeters
Base Area = 4cm × 6cm
Base area = 24cm²
If Height =9cm
Volume of the pyramid = 1/3 × 24 × 9
Volume = 24 × 3
Volume of the pyramid = 72cm³
If the shape is a prism, the volume will be base area × height
= 24 × 9
= 216cm³
It can be seen that volume of rectangular prism = 3 × volume of rectangular pyramid.
Answer:
x = 130
Step-by-step explanation:
Sum of all the angle of quadrilateral = 360°
50 + 45 + 35 + ∠ADC = 360
130 + ∠ADC = 360
∠ADC = 360 - 130
∠ADC = 230
x = Reflex ∠ADC
= 360 - 230
= 130