1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sunny_sXe [5.5K]
3 years ago
14

A string, 30 cm long and having a mass of 45 g, is attached to a 810 Hz oscillator at one end. The other end of the string is fi

xed and the string is kept under tension. The oscillator produces a transverse wave in the string, whose amplitude is 7.0 m, and which propagates with a velocity of 76 m/s. The energy of the wave is absorbed at the fixed end. In this situation, the tension in the string, in SI units, is closest to:_______.
a. 940.
b. 900.
c. 970.
d. 870.
e. 830.
Physics
1 answer:
Karolina [17]3 years ago
3 0

Answer:

870 N

Explanation:

The expression for velocity of wave in a string is given below

v = \sqrt{\frac{T}{m} }  , T is tension and m is mass per unit length .

m = 45 x 10⁻³ / 30 x 10⁻²

= .15 kg/m

Putting the given values in the equation

76 = \sqrt{\frac{T}{.15} }

T = 76² x .15

= 866.4

870 N  approx.

You might be interested in
A car travels at a constant speed around a circular track whose radiu is 2.6 km. The goes once arond the track in 360s . What is
AveGali [126]

Answer:

Centripetal acceleration = 0.79 m/s²

Explanation:

<u>Given the following data;</u>

Radius, r = 2.6 km

Time = 360 seconds

<em><u>Conversion:</u></em>

2.6 km to meters = 2.6 * 1000 = 2600 meters

To find the magnitude of centripetal acceleration;

First of all, we would determine the circular speed of the car using the formula;

Circular \; speed (V) = \frac {2 \pi r}{t}

Where;

  • r represents the radius and t is the time.

Substituting into the formula, we have;

Circular \; speed (V) = \frac {2*3.142*2600}{360}

Circular \; speed (V) = \frac {16338.4}{360}

Circular speed, V = 45.38 m/s

Next, we find the centripetal acceleration;

Mathematically, centripetal acceleration is given by the formula;

Centripetal \; acceleration = \frac {V^{2}}{r}

Where;

  • V is the circular speed (velocity) of an object.
  • r is the radius of circular path.

Substituting into the formula, we have;

Centripetal \; acceleration = \frac {45.38^{2}}{2.6}

Centripetal \; acceleration = \frac {2059.34}{2600}

<em>Centripetal acceleration = 0.79 m/s²</em>

3 0
3 years ago
What will happen when these two waves interact?
oee [108]
B would be your answer
4 0
4 years ago
Why does the sun appear to rise in the east and set in the west every day?
anygoal [31]

Answer: even heating

Explanation:

the earth rotates

4 0
3 years ago
Read 2 more answers
An airplane of mass 1.60 ✕ 104 kg is moving at 66.0 m/s. The pilot then increases the engine's thrust to 7.70 ✕ 104 N. The resis
Ivan

(a) No, because the mechanical energy is not conserved

Explanation:

The work-energy theorem states that the work done by the engine on the airplane is equal to the gain in kinetic energy of the plane:

W=\Delta K (1)

However, this theorem is only valid if there are no non-conservative forces acting on the plane. However, in this case there is air resistance acting on the plane: this means that the work-energy theorem is no longer valid, because the mechanical energy is not conserved.

Therefore, eq. (1) can be rewritten as

W=\Delta K + E_{lost}

which means that the work done by the engine (W) is used partially to increase the kinetic energy of the airplane (\Delta K) and part is lost because of the air resistance (E_{lost}).

(b) 77.8 m/s

First of all, we need to calculate the net force acting on the plane, which is equal to the difference between the thrust force and the air resistance:

F=7.70\cdot 10^4 N - 5.00 \cdot 10^4 N=2.70\cdot 10^4 N

Now we can calculate the acceleration of the plane, by using Newton's second law:

a=\frac{F}{m}=\frac{2.70\cdot 10^4 N}{1.60\cdot 10^4 kg}=1.69 m/s^2

where m is the mass of the plane.

Finally, we can calculate the final speed of the plane by using the equation:

v^2- u^2 = 2aS

where

v=? is the final velocity

u=66.0 m/s is the initial velocity

a=1.69 m/s^2 is the acceleration

S=5.00 \cdot 10^2 m is the distance travelled

Solving for v, we find

v=\sqrt{u^2+2aS}=\sqrt{(66.0 m/s)^2+2(1.69 m/s^2)(5.00\cdot 10^2 m)}=77.8 m/s

8 0
3 years ago
Calculate the sample standard deviation and sample variance for the following frequency distribution of hourly wages for a sampl
ollegr [7]
<h2>Answer:</h2>

(a) standard deviation = σ = 4.9996

(b) variance = σ² = 24.996

<h2>Explanation:</h2><h2 />

<em>Given frequency table (find attached as Table 1);</em>

<u></u>

(a) To find the sample standard deviation and sample variance, follow these steps;

<em>i. Calculate the mid-point c for each group by using the mid-point formula;</em>

c = (lower bound + upper bound) / 2

=> c = (6.51 + 8.50) / 2 = 7.505

=> c = (8.51 + 10.50) / 2 = 9.505

=> c = (10.51 + 12.50) / 2 = 11.505

=> c = (12.51 + 14.50) / 2 = 13.505

=> c = (14.51 + 16.50) / 2 = 15.505

<em>So the new table becomes (find attached as Table 2);</em>

<em>ii. Calculate the total number of samples (n) which is the sum of all the frequencies.</em>

n = 50+18+42+20+46

n = 176

<em>iii. Calculate the mean (M)</em>

This is done by first multiplying the midpoints by the corresponding frequencies and then dividing the result by the total number of samples (n).

M = [(7.505 x 50) + (9.505 x 18) + (11.505 x 42) + (13.505 x 20) + (15.505 x 46)] / 176

M = [375.25 + 171.09 + 483.21 + 270.1 + 713.23] / 176

M = [2012.88] / 176

M = 11.44

<em>iv. Find the variance (σ²);</em>

The variance is calculated using the following formula

σ² = [Σ(f x c²) - (n x M²)] / (n - 1)                ------------(i)

Where;

f = frequency of each boundary data point

<em>=>  Let's first calculate </em>Σ(f x c²).

This is done by finding the sum of the product of the frequency (f) of each boundary point and the square of their corresponding mid-points(c)

Σ(f x c²) = [(50 x 7.505²) + (18 x 9.505²) + (42 x 11.505²) + (20 x 13.505²) + (46 x 15.505²)]

Σ(f x c²) = [(2816.25125) + (1626.21045) + (5559.33105) + (3647.7005) + (11058.63115)]

Σ(f x c²) = 24708.1244

<em>=> Now calculate (n x M²)</em>

n x M² = 176 x 11.44²

n x M² = 23033.7536

<em>=> Now substitute these values into equation (i) to calculate the variance</em>

σ² = [Σ(f x c²) - (n x M²)] / (n - 1)

σ² = [24708.1244 - 23033.7536] / (176 - 1)

σ² = [4374.3708] / (175)

σ² = 24.996

Therefore, the variance is 24.996

<em>v. Find the standard deviation (σ)</em>

The standard deviation is the square root of the variance. i.e

σ = √σ²

σ = √24.996

σ = 4.9996

Therefore, the standard deviation is 4.9996

4 0
3 years ago
Other questions:
  • Does light travels faster in a material with a higher index of refraction
    5·2 answers
  • Heat moves from a cup of hot tea into the hands of the person holding it because of heat transfer by
    5·1 answer
  • Write a paragraph containing 8 rnery transformation
    6·1 answer
  • What role does the environment play in defining the appearance of an organism? 
    14·2 answers
  • Structures that trap light energy and perform photosynthesis
    13·1 answer
  • How much heat is required to convert 10.0 g of ice at -14.0 ∘c to steam at 100.0 ∘c?
    11·1 answer
  • A bullet is fired vertically upward a velocity of 80m/s to what height will the bullet rise above the point of projection​,note:
    5·1 answer
  • Trình bày những hiểu biết của em về đại lượng vận tốc dài, vận tốc góc(định nghĩa, công thức, ý nghĩa, đơn vị, loại đại lượng).
    15·1 answer
  • I need the answer asap plz!!
    8·1 answer
  • A loop rests in the plane of a page of textbook while a magnetic field is directed into the page. A clockwise current is induced
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!