Answer:
Explanation:
First we need to determine the distance covered during deceleration. According to the equation of motion.
S = ut+1/2at²
Given:
u = 20m/s
t = 0.50s
a = -10m/s (deceleration is negative acceleration)
S = 20²+1/2(-10)(0.5)²
S = 400-5(0.5)²
S = 400-5(0.25)
S = 400-1.25
S = 398.75m
If the deer steps onto the road 35m in front of you, the distance between you and the deer when you come to a stop will be 398.75-35 = 363.75m
Heat
required in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC(T2-T1)
Heat = 1 kg (4.18 kJ / kg C)( 1 C)
<span>Heat = 4.18 kJ energy needed</span></span>
Answer:
Work is measured as the product of force and the displacement in the direction of the force. Work = force × displacement in the direction of the force.
Answer:
Explanation:
Let the volume of the unknown bulb = X L
The volume of the system , after opening valve = (X + 0.72 L )
Use Boyles law gas equation,
P1V1 = P2V2 ( at temperature is constant )
Given:
P1 = 1.2 atm
P2 = 683 torr
Converting mmHg to atm,
1 atm = 760 mmHg(torr)
683 mmHg = 683/760
= 0.8987 atm
1.2X = 0.8987*(X + 0.720)
1.2X = 0.8987X + 0.6471
0.3013X = 0.6471
X = 2.15 L