The surface area of a cylindrical can is equal to the sum of the area of two circles and the body of the cylinder: 2πr2 + 2πrh. volume is equal to π<span>r2h.
V = </span>π<span>r2h = 128 pi
r2h = 128
h = 128/r2
A = </span><span>2πr2 + 2πrh
</span>A = 2πr2 + 2πr*(<span>128/r2)
</span>A = 2πr2 + 256 <span>π / r
</span><span>
the optimum dimensions is determined by taking the first derivative and equating to zero.
dA = 4 </span>πr - 256 <span>π /r2 = 0
r = 4 cm
h = 8 cm
</span><span>
</span>
Answer:
see below
Step-by-step explanation:
8x and 56 are not like terms
x is a variable and 56 is a constant
8x can be added to 56 but they cannot be combined together into one term
8x+56 cannot be combined because they are not like terms
Answer: 7.3
Step-by-step explanation:
Do the parentheses first!
4-7= -3
Then, multiply -3 by 2
-3×2= -6
Next,
-6-6.7= -12.7
Then, add -12.7 to 20
-12.7+20=7.3
Your answer is 7.3

<em> </em><em>Linear</em><em> </em><em>Pair</em><em> </em>: - <em>Two</em><em> </em><em>adjacent</em><em> </em><em>Angles</em><em> </em><em>are</em><em> </em><em>set</em><em> </em><em>to</em><em> </em><em>form</em><em> </em><em>a</em><em> </em><em>linear</em><em> </em><em>pair</em><em> </em><em>of</em><em> </em><em>angles</em><em> </em><em>if</em><em> </em><em>they</em><em> </em><em>are</em><em> </em><em>not</em><em> </em><em>common</em><em> </em><em>arm</em><em> </em><em>are</em><em> </em><em>two</em><em> </em><em>opposite</em><em>,</em><em> </em><em>is</em><em> </em><em>called</em><em> </em><em>linear</em><em> </em><em>pair</em><em> </em>~™