1.x^2 +6x - 4 = 6x
X^2 + 6x -4 - 6x = 0
X^2 - 4 = 0
By difference of two squares :
X^2 - 4 = 0 can be written as (x-2) (x+2) = 0
(X-2)=0 therefore x= 2
(X+2)=0 therefore x= -2
2. X^2 - 8x = -6x
X^2 -8x + 6x = 0
X^2 - 2x = 0
X(X-2) = 0
X= 0, X= 2
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
<u>Algebra II</u>
- Distance Formula:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>
Point (21, 13)
Point (3, 13)
<u>Step 2: Find distance </u><em><u>d</u></em>
Simply plug in the 2 coordinates into the distance formula to find distance <em>d</em>
- Substitute in points [Distance Formula]:

- [√Radical] (Parenthesis) Subtract:

- [√Radical] Evaluate exponents:

- [√Radical] Add:

- [√Radical] Evaluate:

Answer:
Below
Step-by-step explanation:
9 
Answer:
Domain [-4,4]
Range [-2,2]
Step-by-step explanation:
The domain is the x-values of the graph and the range in the y-values. When writing domain and range it should be from least to greatest. So to find the domain find the lowest x-value on the graph and then the highest. Next, do the same for y-values. Finally, either surround each value with parentheses or bracket, the difference is that brackets mean that value is included, while parentheses mean that value is not actually on the graph.
In this case, the lowest x-value is -4 and the highest is 4, both values are included as signified by the closed circles, therefore the domain is [-4,4]. The lowest y value is -2 and the highest is 2, both are included, therefore the range is [-2,2].
I think it might be 43° because since the line is going through the middle, it would be 180-47-90=43 (the 90 came from the right angle)
hope this helps! :)