Answer:

Explanation:
We need only to apply the definition of acceleration, which is:

In our case the final velocity is
, the initial velocity is
since it departs from rest, the final time is
and the initial time we are considering is 
So for our values we have:

Answer:
Radius, r = 0.00523 meters
Explanation:
It is given that,
Magnetic field, 
Current in the toroid, I = 9.6 A
Number of turns, N = 6
We need to find the radius of the toroid. The magnetic field at the center of the toroid is given by :

r = 0.00523 m
or

So, the radius of the toroid is 0.00523 meters. Hence, this is the required solution.
Answer:
distance difference would a) increase
speed difference would f) stay the same
Explanation:
Let t be the time the 2nd skydiver takes to travel, since the first skydiver jumped first, his time would be t + Δt where Δt represent the duration between the the first skydiver and the 2nd one. Remember that as t progress (increases), Δt remain constant.
Their equations of motion for distance and velocities are




Their difference in distance are therefore:


(As

So as time progress t increases, Δs would also increases, their distance becomes wider with time.
Similarly for their velocity difference


Since g and Δt both are constant, Δv would also remain constant, their difference in velocity remain the same.
This of this in this way: only the DIFFERENCE in speed stay the same, their own individual speed increases at same rate (due to same acceleration g). But the first skydiver is already at a faster speed (because he jumped first) when the 2nd one jumps. The 1st one would travel more distance compare to the 2nd one in a unit of time.
<span>Actually in this case heat energy is being transferred. Heat
energy or thermal energy is transferred from the burning of wood to the
sausages for it to be cooked. The sausage is being heated by the fire and is
absorbing the heat or thermal energy.</span>
Answer:
The magnitude of magnetic field at given point =
×
T
Explanation:
Given :
Current passing through both wires = 5.0 A
Separation between both wires = 8.0 cm
We have to find magnetic field at a point which is 5 cm from any of wires.
From biot savert law,
We know the magnetic field due to long parallel wires.
⇒ 
Where
magnetic field due to long wires,
,
perpendicular distance from wire to given point
From any one wire
5 cm,
3 cm
so we write,
∴ 

![B =\frac{ 4\pi \times10^{-7} \times5}{2\pi } [\frac{1}{0.03} + \frac{1}{0.05} ]](https://tex.z-dn.net/?f=B%20%3D%5Cfrac%7B%204%5Cpi%20%5Ctimes10%5E%7B-7%7D%20%5Ctimes5%7D%7B2%5Cpi%20%7D%20%5B%5Cfrac%7B1%7D%7B0.03%7D%20%2B%20%5Cfrac%7B1%7D%7B0.05%7D%20%5D)

Therefore, the magnitude of magnetic field at given point = 