1) See attached figure
The relationship between charge and current is:
where
i is the current
Q is the charge
t is the time
Therefore, the current is the rate of change of the charge passing through a given point over time.
This means that for a graph of charge over time, the current is just equal to the slope of the graph.
For the graph in this problem:
- Between t = 0 and t = 2 s, the slope is

therefore the current is
i = 25 A
- Between t = 2 s and t = 6 s, the slope is

therefore the current is
i = -25 A
- Between t = 6 s and t = 8 s, the slope is

therefore the current is
i = 25 A
The figure attached show these values plotted on a graph.
2)
The previous equation can be rewritten as
This equation is valid if the current is constant: if the current is not constant, then the total charge is simply equal to the area under a current vs time graph.
Here we have the current vs time graph, so we gave to find the area under it.
The area of the first triangle is:

While the area of the second square is

So, the total area (and the total charge) is

When the image of a distant object is brought into focus of front of a person's retina, the defect is called: nearsightedness.
HCl + NaOH -> H2O + NaCl
CaCO3 + KI -> K2CO2 + CaI2
AlF3 + Mg(NO3)2 -> Al(NO3)3 + MgF2
Answer:
can you translate that plz
Explanation:
Answer:
34.6 m/s
Explanation:
From conservation of momentum, the sum of initial and final momentum are equal. Momentum is a product of mass and velocity. Initial mass will be 42.8+31.5+25.9=100.2 kg
Final mass will be 31.5+25.9=57.4 kg
From formula of momentum
M1v1=m2v2
Making v2 the subject of the formula then

Substitute 100.2 kg for M1, 19.8 m/s fkr v1 and 57.4 kg for m2 then
