Answer:
I) |xz| ≈ 28.6 km
II) |yz| ≈ 34.8 km
Step-by-step explanation:
Let's assume that the position of ship due south of x is z (aà pictor representation of the question is attached)
|xy| = 20 km, |xz| = ?, |yz| = ?, θ(y) = 55°
Using Trigonometric ratio - SOHCAHTOA
I) Tan θ = |xz| ÷ |xy| ⇒ Tan 55° = |xz| ÷ 20
|xz| = 20 * Tan 55 = 20 * 1.428
|xz| = 28.56 km
|xz| ≈ <u>28.6 km</u>
<u />
II) Cos θ = |xy| ÷ |yz| ⇒ Cos 55° = 20 ÷ |yz|
|yz| * Cos 55° = 20 ⇒ |yz| = 20 ÷ Cos 55°
|yz| = 20 ÷ 0.574 = 34.84 km
|yz| ≈ <u>34.8 km</u>
<u>Answer</u>
12 units
<u>Explanation</u>
This can be solved using the properties of a circle.
DG and EG are secants f the circle.
DG×HG =EG×FG
(x+3+5)×5 = (x+6)×6
(x+8)5 = 6x + 36
5x +40 = 6x + 36
x = 4
DG = (x+3+5)
= 4 + 3 + 5
= 12 units
.25
you can come to this conclusion by calculating 13/52
Answer:
B = 18m
C = 19.5m
h = 9m
Step-by-step explanation:
7.5/5 = 1.5
12*1.5 = 18
13*1.5 = 19.5
6*1.5 = 9m