Answer:
95.64% probability that pledges are received within 40 days
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that pledges are received within 40 days
This is the pvalue of Z when X = 40. So



has a pvalue of 0.9564
95.64% probability that pledges are received within 40 days
The equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is
.
Given
The magnitude, M, of an earthquake is defined to be M = log StartFraction I Over S EndFraction, where I is the intensity of the earthquake (measured by the amplitude of the seismograph wave) and S is the intensity of a "standard" earthquake, which is barely detectable.
<h3>The magnitude of an earthquake</h3>
The magnitude of an earthquake is a measure of the energy it releases.
For an earthquake with 1,000 times more intense than a standard earthquake.
The equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is;

Hence, the equation represents the magnitude of an earthquake that is 10 times more intense than a standard earthquake is
.
To know more about the magnitude of earthquakes click the link given below.
brainly.com/question/1337665
Answer:
50
Step-by-step explanation:
50 x 2 = 100
and
100/2 = 50
Yes because if you look at the tenths place you will see that 8 is bigger than 7