Answer:
32 nd term
Step-by-step explanation:
The formula for the sequence is
n² + 1 ( that is 1 added to each square number )
Equate to 1025 and solve for n
n² + 1 = 1025 ( subtract 1 from each side )
n² = 1024 ( take the square root of both sides )
n = = 32
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
The answer is C because it’s constant but starts further down
Answer:
for which problems if it is all the ones you haven't done yet then say that.
Step-by-step explanation:
i dont know how to gragh pionts on this thing plz tell me how
Well, the keyword here is One of the performers insist on being the last.
So, the amount of performers that we can arrange freely is 7 performers.
Different ways we can schedule their appearance is :
7 ! = 7 x 6 x 5 x 4 x 3 x 2 x 1
= 5040
hope this helps