Answer:
H is the reflection of itself in the horizontal line
<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>1</em><em>4</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em>
<em>Good</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
First, we get ax^2+bx+c. Next, we know that the line of symmetry is -b/2a. Since we know that there is a maximum value, the parabola is facing downwards, so a is negative. For random numbers, we can say that a = -0.5 and b=-10 (b needs to be negative for -b/2a to equal -10), getting -0.5x^2-10x+c. Plugging -10 in for x (since -10 is the middle it is the max), we get -50+100=50. Since the maximum needs to be 5, not 50, we subtract 45 from the answer to get it and therefore make c = -45, getting -0.5x^2-10x-45
Find the horizontal and vertical distance between the points. First, subtract y2 - y1 to find the vertical distance. Then, subtract x2 - x1 to find the horizontal distance.
<span>The correct answer is D. The number 7 is subtracted from the first term, 2x/3, but then an equal sum is added, and the two effectively cancel each other out. This means that the value of the first expression is essentially 2x/3, which is option D.</span>