its period should be the amount it takes to cycle from cycle to cycle so it would be 10 and your frequency would have to be calculated by taking 10 and dividing by 2 since that is how many cycles you have done so your frequency is 5
plz mark me brainliest
Answer: heat
Insulation Traps Heat. Keeping the cold air out
Explanation:
Assume the snow is uniform, and horizontal.
Given:
coefficient of kinetic friction = 0.10 = muK
weight of sled = 48 N
weight of rider = 660 N
normal force on of sled with rider = 48+660 N = 708 N = N
Force required to maintain a uniform speed
= coefficient of kinetic friction * normal force
= muK * N
= 0.10 * 708 N
=70.8 N
Note: it takes more than 70.8 N to start the sled in motion, because static friction is in general greater than kinetic friction.
Explanation:
We need to calculate the speed of light in each materials
(I). Gallium phosphide,
The index of refraction of Gallium phosphide is 3.50
Using formula of speed of light
....(I)
Where,
= index of refraction
c = speed of light
Put the value into the formula


(II) Carbon disulfide,
The index of refraction of Gallium phosphide is 1.63
Put the value in the equation (I)


(III). Benzene,
The index of refraction of Gallium phosphide is 1.50
Put the value in the equation (I)


Hence, This is the required solution.
Answer:
Weight on Earth = We = 186.2 N
Weight on Mars = Wm = 70.94 N
Explanation:
The weight of an object is defined as the force applied on the object by the gravitational field. The magnitude of weight is given by the following formula:
W = mg
were,
W= Weight of Eric
m = mass of Eric
g = acceleration due to gravity
ON EARTH:
W = We = Eric's Weight on Earth = ?
m = Eric's Mass on Earth = 19 kg
ge = acceleration due to gravity on Earth = 9.8 m/s²
Therefore,
We = (19 kg)(9.8 m/s²)
<u>We = 186.2 N</u>
<u></u>
ON MARS:
W = Wm = Eric's Weight on Mars = ?
m = Eric's Mass on Mars = 19 kg
gm = acceleration due to gravity on Mars = 0.381(ge) = (0.381)9.8 m/s² = 3.733 m/s²
Therefore,
Wm = (19 kg)(3.733 m/s²)
<u>Wm = 70.94 N</u>