C: the mechanical energy isn't conserved. Some energy was lost to friction.
The gravitational force experienced by Earth due to the Moon is <u>equal to </u>the gravitational force experienced by the Moon due to Earth.
<u>Explanation</u>:
The force that attracts any two objects/bodies with mass towards each other is defined as gravitational force. Generally the gravitational force is attractive, as it always pulls the masses together and never pushes them apart.
The gravitational force can be calculated effectively using the following formula: F=GMmr^2
where “G” is the gravitational constant.
Though gravity has the ability to pull the masses together, it is the weakest force in the nature.
The mass of the Earth and moon varies, but still the gravitational force felt by the Earth and Moon are alike.
Answer:
d = 76.5 m
Explanation:
To find the distance at which the boats will be detected as two objects, we need to use the following equation:

<u>Where:</u>
θ: is the angle of resolution of a circular aperture
λ: is the wavelength
D: is the diameter of the antenna = 2.10 m
d: is the separation of the two boats = ?
L: is the distance of the two boats from the ship = 7.00 km = 7000 m
To find λ we can use the following equation:
<u>Where:</u>
c: is the speed of light = 3.00x10⁸ m/s
f: is the frequency = 16.0 GHz = 16.0x10⁹ Hz
Hence, the distance is:

Therefore, the boats could be at 76.5 m close together to be detected as two objects.
I hope it helps you!
Answer:
The requested distance is 4320 meters
Explanation:
We can use the formula for velocity in this movement at constant velocity (v), which is defined as the quotient between the distance covered divided the time it took:

Since we know the velocity and the time, we can solve for the distance:
