Answer:
R = 28.125 ohms
Explanation:
Given that,
The voltage of a bulb, V = 4.5 V
Current, I = 0.16 A
We need to find the resistance of the filament. Using Ohm's law,
V = IR
Where
R is the resistance of the filament
So,

So, the resistance of the filament is equal to 28.125 ohms.
Answer:
Image distance is -52.5 cm
Image is virtual and forms on the same side of the lens and upright image is formed.
Explanation:
u = Object distance
v = Image distance
f = Focal length = 35
m = Magnification = 2.5

Lens equation


Image distance is -52.5 cm
Image is virtual and forms on the same side of the lens and upright image is formed.
The magnetic field is described mathematically as a vector field<span>. This vector field can be plotted directly as a set of many vectors drawn on a grid. Each vector points in the direction that a compass would point and has length dependent on the strength of the magnetic force. </span>
Answer:
Power = 20 Watts
Explanation:
Given the following data;
Voltage = 100 V
Resistance = 500 Ohms
To find the power that is required to light a lightbulb;
Mathematically, power can be calculated using the formula;

Substituting into the formula, we have;


Power = 20 Watts
Answer:
0.01 m
Explanation:
Since the speed of light is 3.0×10^8 m/s
Use the equation,
Wavelength = speed ÷ frequency
Wavelength = 3.0×10^8 ÷ 3×10^10
Wavelength = 0.01m