Answer:MOST COMMON METHOD IS USING A LUBRICANT -
A lubricant is a substance, usually organic, introduced to reduce friction between surfaces in ... medical examination. It is mainly used to reduce friction and to contribute to a better and efficient functioning of a mechanism. ... For lubricant base oil use, the vegetable derived materials are preferred
OTHER METHODS-
There are a number of ways to reduce friction:
Make the surfaces smoother. ...
Lubrication is another way to make a surface smoother.
Make the object more streamlined.
Reduce the forces acting on the surfaces.
Reduce the contact between the surfaces.
PLEASE DO MARK ME AS THE BRAINLIEST :)
Answer:
The the maximum force acting on the crate is 533.12 newtons.
Explanation:
It is given that,
Mass of the wooden crate, m = 136 kg
The coefficient of static friction, 
The coefficient of kinetic friction, 
We need to find the maximum force exerted horizontally on the crate without moving it. As the crate is not moving than the coefficient of static friction will act and the force is given by :


F = 533.12 N
So, the maximum force acting on the crate is 533.12 newtons. Hence, this is the required solution.
Answer:
Yes
Explanation:
Kinetic energy is K.E1/2mv2 so that means it is directly proportional to mass and velocity.
The unit conversion factors are always a power of ten. It is very easy to get different measurements quickly.
Answer:
42.86m
Explanation:
The first thing we should keep in mind is that the watermelon moves with uniform acceleracion equal to gravity (9.81m / s ^ 2)
A body that moves with constant acceleration means that it moves in "a uniformly accelerated motion", which means that if the velocity is plotted with respect to time we will find a line and its slope will be the value of the acceleration, it determines how much it changes the speed with respect to time.
When performing a mathematical demonstration, it is found that the equations that define this movement are as follows.

where
Vf=29m/s= final speed
Vo= initial speed=0m/S
g=gravity=9.81m/s^2
Y= distance traveled(m)
solving

the distance traveled by watermelon is 42.86m