Perimeter = (x+2) + x + (x+2) + x
Perimeter = 4x + 4
Area = x(x+2)
Area = x^2 + 2x
Answer:
E) we will use t- distribution because is un-known,n<30
the confidence interval is (0.0338,0.0392)
Step-by-step explanation:
<u>Step:-1</u>
Given sample size is n = 23<30 mortgage institutions
The mean interest rate 'x' = 0.0365
The standard deviation 'S' = 0.0046
the degree of freedom = n-1 = 23-1=22
99% of confidence intervals
(from tabulated value).





using calculator

Confidence interval is


the mean value is lies between in this confidence interval
(0.0338,0.0392).
<u>Answer:-</u>
<u>using t- distribution because is unknown,n<30,and the interest rates are not normally distributed.</u>
Answer:
z = 36 rolls , probability for getting 7 = 1/6
Step-by-step explanation:
A die has 6 possible outcomes, which sums to 36 for two dice for every value on both dice.
The outcomes for rolling both dice for 36 times gives 6 possible outcomes summing to 7, that is, (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), and (6, 1).
There the probability of getting a sum dice of 7 is:
= 6 / 36 = 1/6
m x H = ![\left[\begin{array}{ccc}-25&37.5&-12.5\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%2637.5%26-12.5%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Step 1; Multiply 5 with this matrix
and we get a matrix ![\left[\begin{array}{ccc}-5&10\\20&40\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%2610%5C%5C20%2640%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Multiply the fraction
with the matrix
and we get ![\left[\begin{array}{ccc}-\frac{2m}{5} &\frac{4m}{5} \\\frac{8m}{5} &\frac{16m}{5} \\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B2m%7D%7B5%7D%20%26%5Cfrac%7B4m%7D%7B5%7D%20%5C%5C%5Cfrac%7B8m%7D%7B5%7D%20%26%5Cfrac%7B16m%7D%7B5%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step2; Now equate corresponding values of the matrices with each other.
-5 =
and so on. By equating we get the value of m as 
Step 3; Add the matrices to get the value of matrix m.
Adding the three matrices on the RHS we get
.
Step 4; Adding the matrices on the LHS we get the resulting matrix as H +
. Equating the matrices from step 3 and 4 we get the value of H as ![\left[\begin{array}{ccc}-2&3&-1\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%26-1%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step 5; Now to find the value of m x H we need to multiply the value of
with the matrix
Step 6; Multiplying we get the matrix m x H = [ -25
]
15 = 0.23x
x = 65.2
therefore 15 is 23% of 65.2