Thank you for posting your question here. Below is the solution:
HNO3 --> H+ + NO3-
<span>HNO3 = strong acid so 100% dissociation </span>
<span>** one doesn't need to find the molarity of water since it is the solvent </span>
<span>0M HNO3 </span>
<span>1x10^-6M H3O+ </span>
<span>1x10^-6M NO3- </span>
<span>1x10^-8M OH-.....the Kw = 1x10^-14 = [H+][OH-] </span>
<span>you have 1x10^-6M H+ so, 1x10^-14 / 1x10^-6 = 1x10^-8M OH- </span>
<span>1x10^-6 Ba(OH)2 = strong base, 100% dissociation </span>
<span>1x10^-6M Ba2+ </span>
<span>2x10^-6M OH- since there are 2 OH- / 1 Ba2+ </span>
<span>0M Ba(OH)2 </span>
<span>5x10^-9M H3O+</span>
Answer:
Failed to upload, Please Retry
Explanation:
Failed to upload, Please Retry
The balanced chemical reaction for the complete combustion of C4H10 is shown below:
C4H10 + (3/2)O2 --> 4CO2 + 5H2O
The enthalpy of formation are listed below:
C4H10: -2876.9 kJ/mol
O2: none (because it is pure substance)
CO2: -393.5 kJ/mol
H2O: -285.8 kJ/mol
The enthalpy of combustion is computed by subtracting the total enthalpy formation of the reactants from that of the products.
ΔHc = (4)(-393.5 kJ/mol) + (5)(-285.8 kJ/mol) - (-2876.9 kJ/mol)
= -<em>126.1 kJ</em>
Thus, the enthalpy of combustion of the carbon is -126.1 kJ.
<span>In 5.70 mol of Hafnium there are 34,326 208 203*10^23 atoms.</span>