1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
1 year ago
7

This is my question in imageIf 16.0 grams of aluminum oxide were actually produced, what is the percent yield of the reaction be

low given that you start with 10.0 g of Al and 19.0 grams of O2?Reaction: 4Al + 3O2 → 2Al2O3Group of answer choices70%39.6%75.0%100%85.0%

Chemistry
1 answer:
nydimaria [60]1 year ago
7 0

Answer: the percent yield of this reaction was 84.7% and the best option to answer the question is the last one (letter E, 85.00%)

Explanation:

The question requires us to determine the percent yield of a reaction, given the amount of product obtained, the chemical equation and the amount of reactants used.

The following information was provided by the question:

<em>mass of Al2O3 produced = 16.0 g</em>

<em>mass of Al used = 10.0 g</em>

<em>mass of O2 used = 19.0 g</em>

<em>balanced chemical equation:</em>

4Al+3O_2\rightarrow2Al_2O_3

To solve this problem, we'll need to go through the following steps:

1) Calculate the number of moles used of each reactant;

2) determine the limiting reactant from the stoichiometry of the reaction and the amount of reactants used;

3) calculate the theoretical yield of the reaction, or, in other words, the amount of Al that should be produced, considering the limiting reactant;

4) calculate the percent yield of the reaction.

Next, we'll go through these steps to solve the problem:

1) Calculating the number of moles of each reactant

We can use the following equation to determine the amount of moles of Al and O2 that were used in the reaction:

n=\frac{m}{MM}

where n is the number of moles (in mol), m is the mass of the sample (in grams) and MM is the molar mass of the compound (in g/mol).

Knowing that the molar masses of Al and O2 are 26.98 and 31.98 g/mol, respectively, we can calculate the number of moles of each reactant as:

\begin{gathered} n_{Al}=\frac{10.0g}{26.98g/mol}=0.371mol\text{ Al} \\ n_{O_2}=\frac{19.0g}{31.98g/mol}=0.594mol\text{ }O_2 \end{gathered}

Therefore, 0.371 and 0.594 moles of Al and O2 were used in the reaction, respectively.

2) Determining the limiting reactant.

From the balanced chemical equation, we can see that 4 moles of Al are necessary to react with 3 moles of O2. Thus, we can determine how many moles of O2 would be necessary to react with 0.371 moles of Al:

<em>4 mol Al ------------------- 3 mol O2</em>

<em>0.371 mol Al ------------- x</em>

Solving for x, we'll have:

x=\frac{(3mol\text{ }O_2)\times0.371mol\text{ Al\rparen}}{(4mol\text{ Al\rparen}}=0.278mol\text{ }O_2

Therefore, 0.278 moles of O2 would be necessary to react with the used amount of Al (0.371 mol). Since the actual amount of O2 used is greater than the necessary amount, we can say that O2 is the excess reactant and Al is the limiting reactant.

3) Calculating the theoretical amount of Al2O3 produced

Now that we know that Al was the limiting reactant in this reaction, we can determine how much Al2O3 should be produced in the reaction.

From the balanced chemical equation, we can see that 4 moles of Al are necessary to produce 2 moles of Al2O3. Thus, we can write:

<em>4 mol Al --------------------- 2 mol Al2O3</em>

<em>0.371 mol Al --------------- y</em>

Solving for y, we'll have:

y=\frac{(2mol\text{ A}l_2O_3)\times(0.371mol\text{ Al\rparen}}{(4mol\text{ Al\rparen}}=0.186mol\text{ A}l_2O_3

Therefore, with the amount of Al used, 0.186 moles of Al2O3 would be produced.

We can convert this amount in mass of Al2O3 using its molar mass (MM = 101.96 g/mol):

\begin{gathered} n=\frac{m}{MM}\rightarrow m=n\times MM \\ n_{Al_2O_3}=(0.186mol)\times(101.96g/mol)=18.91g \end{gathered}

Therefore, 18.9 g of Al2O3 should be obtained from the given mass of Al given.

4) Calculating the percent yield of the reaction

Note that the amount of Al2O3 expected, from the amount of reactants given, was 18.9g, but only 16.0g of the product was obtained. We can calculate the percent yield of a reaction using the following equation:

\begin{gathered} percent\text{ yield = }\frac{actual\text{ yield \lparen g\rparen}}{theoretical\text{ yield \lparen g\rparen}}\times100\% \\  \\ \%yield=\frac{16.0g}{18.9g}\times100\%=84.7\% \end{gathered}

Therefore, the percent yield of this reaction was 84.7% and the best option to answer the question is the last one (letter E, 85.00%).

You might be interested in
Sulfur dioxide and oxygen react to form sulfur trioxide during one of the key steps in sulfuric acid synthesis. An industrial ch
mamaluj [8]

Answer:

Explanation:

From the given information:

The equation for the reaction can be represented as:

2SO_2 + O_2 \to 2SO_3

The I.C.E table can be represented as:

                     2SO₂              O₂                   2SO₃

Initial:             14                  2.6                     0

Change:        -2x                -x                      +2x

Equilibrium:   14 - 2x          2.6 - x                2x

However, Since the amount of sulfur trioxide gas to be 1.6 mol.

SO₃ = 2x,

then x = 1.6/2

x = 0.8 mol

For 2SO₂; we have 14 - 2x

= 14 - 2(0.8)

= 14 - 1.6

= 12.4 mol

For O₂; we have 2.6 - x

= 2.6 - 1.6

= 1.0 mol

Thus;

[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,

[O₂] = 1/50 = 0.02 M ,  

[SO₃] = 1.6/50 = 0.032 M

Kc = [SO₃]² / [SO₂]² [O₂]

= ( 0.032²) / ( 0.248² x 0.02)

= 0.8325

Recall that; the equilibrium constant for the reaction 2SO_2 + O_2 \to 2SO_3 = 0.8325;

If we want to find:

SO_2 + \dfrac{1}{2}O_2 \to SO_3

Then:

K_c = (0.8325)^{1/2}

\mathbf{K_c = 0.912}

Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.

7 0
3 years ago
How is electronegativity related to covalent bonding?
Zolol [24]

Answer:

Atoms must have similar electronegativities in order to share electrons in a covalent bond.

Explanation:

Covalent bonding is one of the bondings that occurs between the atoms of elements. It is the bonding in which atoms share their valence electrons with one another. However, the ELECTRONEGATIVITY, which is the ability of an atom to be attracted to electrons play a major role in the formation of covalent bonds.

When atoms of different electronegativities combine, the more electronegative atom pulls more electrons towards itself, hence, an IONIC bond is formed. However, when the electronegativities of the atoms are similar, the sharing of their electrons becomes stronger. Hence, ATOMS MUST HAVE SIMILAR ELECTRONEGATIVITIES in order to share electrons in a covalent bond.

5 0
3 years ago
Read 2 more answers
How are the four kinds of DNA nucleotides different from each other?
Firlakuza [10]

Answer:

The sugar in DNA is deoxyribose. ... Nucleotides in DNA contain four different nitrogenous bases: Thymine, Cytosine, Adenine, or Guanine. There are two groups of bases: Pyrimidines: Cytosine and Thymine each have a single six-member ring.

6 0
3 years ago
The solvolysis of t-butyl bromide in methanol yields 2-methylpropene in an E1 reaction (among other products). What is the effec
jolli1 [7]

Answer:

See explanation

Explanation:

For a reaction that proceeds by E1 mechanism, the rate determining step involves the formation of the carbocation.  

The rate of formation of this carbocation depends only on the concentration of the t-butyl bromide since it is the only specie that enters into the rate equation.

Hence, when the concentration of t-butyl bromide is tripled, the rate of reaction is tripled.

Methanol does not enter into the rate equation hence doubling its concentration does not affect the rate of reaction.

7 0
2 years ago
what is the relationship between electron affinity and atomic radius? why do you think this relationship occurs?
tatyana61 [14]
Electron affinity increases from left to right within a period. This is caused by the decrease in atomic radius. Electron affinity decreases from top to bottom within a group. This is caused by the increase in atomic radius.
8 0
2 years ago
Other questions:
  • Why is frying an egg an example of a chemical change?
    12·1 answer
  • What does diatomic element mean and what exactly does it do?
    5·1 answer
  • Whats a electron please help meeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
    13·2 answers
  • Which fact was most likely discovered between the time of Mendeleev’s table and the time of Moseley’s table that helped Moseley
    13·1 answer
  • NaCl + H2SO4 ---&gt; Na2SO4 + HCl<br> Balance the double replacement chemical reaction.
    15·2 answers
  • What type of molecular model is most accurate to the shape of a molecule?
    13·1 answer
  • Please help will give 40 points and brainiest
    7·1 answer
  • Boron has two isotopes, Boron 10 which has a mass of 10.0129 amu and Boron-11 with a mass of 11.0093 amu. B-10 occurs 84.74% of
    9·1 answer
  • Which of the following describes fertilization?
    11·1 answer
  • 1. we used __________ to represent an element.
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!