see the attached figure with the letters
1) find m(x) in the interval A,BA (0,100) B(50,40) -------------- > p=(y2-y1(/(x2-x1)=(40-100)/(50-0)=-6/5
m=px+b---------- > 100=(-6/5)*0 +b------------- > b=100
mAB=(-6/5)x+100
2) find m(x) in the interval B,CB(50,40) C(100,100) -------------- > p=(y2-y1(/(x2-x1)=(100-40)/(100-50)=6/5
m=px+b---------- > 40=(6/5)*50 +b------------- > b=-20
mBC=(6/5)x-20
3)
find n(x) in the interval A,BA (0,0) B(50,60) -------------- > p=(y2-y1(/(x2-x1)=(60)/(50)=6/5
n=px+b---------- > 0=(6/5)*0 +b------------- > b=0
nAB=(6/5)x
4) find n(x) in the interval B,CB(50,60) C(100,90) -------------- > p=(y2-y1(/(x2-x1)=(90-60)/(100-50)=3/5
n=px+b---------- > 60=(3/5)*50 +b------------- > b=30
nBC=(3/5)x+30
5) find h(x) = n(m(x)) in the interval A,B
mAB=(-6/5)x+100
nAB=(6/5)x
then
n(m(x))=(6/5)*[(-6/5)x+100]=(-36/25)x+120
h(x)=(-36/25)x+120
find <span>h'(x)
</span>h'(x)=-36/25=-1.44
6) find h(x) = n(m(x)) in the interval B,C
mBC=(6/5)x-20
nBC=(3/5)x+30
then
n(m(x))=(3/5)*[(6/5)x-20]+30 =(18/25)x-12+30=(18/25)x+18
h(x)=(18/25)x+18
find h'(x)
h'(x)=18/25=0.72
for the interval (A,B) h'(x)=-1.44
for the interval (B,C) h'(x)= 0.72
<span> h'(x) = 1.44 ------------ > not exist</span>
Answer:
Answer:
g(x)=-6/5x+1/2
h(x)=-6/5x-1/2
Step-by-step explanation:
1). g(x)=−f(x) ?
f(x)=6/5x−1/2
g(x)=−(6/5x−1/2)
g(x)=-6/5x+1/2
2). h(x)=f(−x) ?
f(-x)=6/5(-x)−1/2
f(-x)=-6/5x-1/2
h(x)=-6/5x-1/2
Step-by-step explanation:
Answer:
a. 45° and 135
The non-horizontal rays of ∠ and ∠ will not intersect to form a triangle; the rays will be parallel to each other.
b. 45° and 45°
The non-horizontal rays of ∠ and ∠ will intersect to form a triangle
c. 45° and 145°
The non-horizontal rays of ∠ and ∠ will not intersect to form a triangle.
Step-by-step explanation:
Hope this helps
Answer:
3/8 = 9/24
1/3 = 8/24
3/8 > 1/3
Step-by-step explanation:
3/8 = 9/24 (multiply both numerator and denominator by 3)
1/3 = 8/24 (multiply both numerator and denominator by 8)
9/24 > 8/24