2 answers:
Answer:
True
Step-by-step explanation:
We can sue the pythagorean theorem to verify. 15^2+36^2 should equal the longest side squared or 39^2. If we plug in the numbers, it checks out!
Answer:
true
Step-by-step explanation:
we can use the Pythagorean theorem to verify if the sum of the squares built on the legs is equal to the square built on the hypotenuse
36^2 + 15^2 = 39^2
1296 + 225 = 1521
1521 = 1521
the equality is verified so the answer is true
You might be interested in
OK 33*76= 2508 if that is your question if its not tell me and i will see what i can do
root 30 ..................
Hawhiskwkwkwjehwhwhjwwjjwwhwhwjwjwwhwbw
Answer:

Step-by-step explanation:
We can write
as follows:
![\frac{11s}{s^2-12s+52}\\=11\left [ \frac{s}{s^2-12s+52} \right ]\\=11\left [ \frac{s}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6+6}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16}](https://tex.z-dn.net/?f=%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%7D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7Bs%5E2-12s%2B52%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%2B6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D)
To find:
![L^{-1}\left [ \frac{11s}{s^2-12s+52 \right ]}\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%20%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%20%5Cright%20%5D%7D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D)
We will use formulae:

we get solution as :
![L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+4^2} \right ]+\frac{66}{4}\left [ \frac{4}{(s-6)^2+4^2} \right ] \right ]\\=11e^{6t}\cos 4t+\frac{33}{2}e^{6t}\sin 4t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B4%7D%5Cleft%20%5B%20%5Cfrac%7B4%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%20%5Cright%20%5D%5C%5C%3D11e%5E%7B6t%7D%5Ccos%204t%2B%5Cfrac%7B33%7D%7B2%7De%5E%7B6t%7D%5Csin%204t)
Answer:
(−∞,0) (0,∞)
Step-by-step explanation: