A dichotomous key helps you identify unknown specimens based on their traits because there are only two options available per trait. Selecting one from the two options (usually contrasting characteristics) from each step leads to smaller and smaller groups until the option is reduced to single and unique trait of an organism.
Considering you need to identify an organism. So, on the top of they key is animal with options: (a) with red blood cells and (b) no red blood cells. The option you will select is no red blood cells and under option b, you’re given two choices again: (a) hard bodies and (b) soft bodies. You’ll select soft bodies, then two options again are given: (a) with shell and (b) without shell. The option you’ll select would be without shell, and so on.
Answer:
The correct answer is option B.
Explanation:
FRAP or Fluorescence Recovery After Photobleaching refers to a method of finding the kinetics of diffusion in living cells, generally with the assistance of fluorescence microscopy. The method comprises the labeling of a particular cell constituent with a fluorescent molecule, imaging that cell, photobleach a small section of the cell, then image the recovery of fluorescence with time.
In the given question, as the fluorescence has recovered back to the bleached region. The scientist can come to the conclusion that the membrane of the cell and the peripheral membrane proteins do not always belong together.
It is practical knowledge in the sense that we know why some parts of the world are inherently risky to live in. Even though volcanic eruptionis, earthquakes and tsunamis are difficult to predict, it makes sense to have building codes and emergency plans that take this into account.
It is science’s response to the beliefs that natural catastrophes (volcanism, earthquakes and tsunamis) are divine punishments for the evil ways of some individuals.
Even if you will never use or apply this knowledge, knowing about the theory of plate tectonics gives you a current scientific perspective on what we know about the natural world.
It is a good example of how scientific theories proceed by trying to fit several observations into a coherent explanation.
Learning about the observations that needed to be made and explained for the theory to win over scientists helps caution you against people who adopt belief systems without questioning the myths told to them, or those who try to profit from ignorance of how nature actually works.
When it is well taught, it should convince you that, like any scientific theory, plate tectonics is a “work in progress”. New discoveries continue to be made, and it takes creative and logical thinking, debate and a quest for more observations in order to determine which ones prove or challenge the current theory and which ones may lead to its refinement.
Answer:
check explanation
Explanation:
If you are talking about adapting to an environment then yes, like how we train to strengthen our muscles to get stronger. If you mean by evolving then no, a single organism can not evolve their traits in a lifetime, like a human can't naturally grow gills to breathe underwater