<em></em>
<em>60</em>
<em>See steps</em>
<em>Step by Step Solution:</em>
<em>More Icon</em>
<em>Reformatting the input :</em>
<em>Changes made to your input should not affect the solution:</em>
<em />
<em>(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)</em>
<em />
<em>STEP</em>
<em>1</em>
<em>:</em>
<em> 27</em>
<em> Simplify ——</em>
<em> 10</em>
<em>Equation at the end of step</em>
<em>1</em>
<em>:</em>
<em> 27 62 93 12 62 93 12 27</em>
<em> (((——•——)-(——•——))+(——•——))-(——•——)</em>
<em> 10 10 10 10 10 10 10 10</em>
<em>STEP</em>
<em>2</em>
<em>:</em>
<em> 6</em>
<em> Simplify —</em>
<em> 5</em>
<em>Equation at the end of step</em>
<em>2</em>
<em>:</em>
<em> 27 62 93 12 62 93 6 27</em>
<em> (((——•——)-(——•——))+(——•——))-(—•——)</em>
<em> 10 10 10 10 10 10 5 10</em>
<em>STEP</em>
<em>3</em>
<em>:</em>
<em> 93</em>
<em> Simplify ——</em>
<em> 10</em>
<em>Equation at the end of step</em>
<em>3</em>
<em>:</em>
<em> 27 62 93 12 62 93 81</em>
<em> (((——•——)-(——•——))+(——•——))-——</em>
<em> 10 10 10 10 10 10 25</em>
<em>STEP</em>
<em>4</em>
<em>:</em>
<em> 31</em>
<em> Simplify ——</em>
<em> 5 </em>
<em>Equation at the end of step</em>
<em>4</em>
<em>:</em>
<em> 27 62 93 12 31 93 81</em>
<em> (((——•——)-(——•——))+(——•——))-——</em>
<em> 10 10 10 10 5 10 25</em>
<em>STEP</em>
<em>5</em>
<em>:</em>
<em> 6</em>
<em> Simplify —</em>
<em> 5</em>
<em>Equation at the end of step</em>
<em>5</em>
<em>:</em>
<em> 27 62 93 6 2883 81</em>
<em> (((——•——)-(——•—))+————)-——</em>
<em> 10 10 10 5 50 25</em>
<em>STEP</em>
<em>6</em>
<em>:</em>
<em> 93</em>
<em> Simplify ——</em>
<em> 10</em>
<em>Equation at the end of step</em>
<em>6</em>
<em>:</em>
<em> 27 62 93 6 2883 81</em>
<em> (((——•——)-(——•—))+————)-——</em>
<em> 10 10 10 5 50 25</em>
<em>STEP</em>
<em>7</em>
<em>:</em>
<em> 31</em>
<em> Simplify ——</em>
<em> 5 </em>
<em>Equation at the end of step</em>
<em>7</em>
<em>:</em>
<em> 27 31 279 2883 81</em>
<em> (((—— • ——) - ———) + ————) - ——</em>
<em> 10 5 25 50 25</em>
<em>STEP</em>
<em>8</em>
<em>:</em>
<em> 27</em>
<em> Simplify ——</em>
<em> 10</em>
<em>Equation at the end of step</em>
<em>8</em>
<em>:</em>
<em> 27 31 279 2883 81</em>
<em> (((—— • ——) - ———) + ————) - ——</em>
<em> 10 5 25 50 25</em>
<em>STEP</em>
<em>9</em>
<em>:</em>
<em>Calculating the Least Common Multiple</em>
<em> 9.1 Find the Least Common Multiple</em>
<em />
<em> The left denominator is : 50 </em>
<em />
<em> The right denominator is : 25 </em>
<em />
<em> Number of times each prime factor</em>
<em> appears in the factorization of:</em>
<em> Prime </em>
<em> Factor Left </em>
<em> Denominator Right </em>
<em> Denominator L.C.M = Max </em>
<em> {Left,Right} </em>
<em>2 1 0 1</em>
<em>5 2 2 2</em>
<em> Product of all </em>
<em> Prime Factors 50 25 50</em>
<em />
<em> Least Common Multiple:</em>
<em> 50 </em>
<em />
<em>Calculating Multipliers :</em>
<em> 9.2 Calculate multipliers for the two fractions</em>
<em />
<em />
<em> Denote the Least Common Multiple by L.C.M </em>
<em> Denote the Left Multiplier by Left_M </em>
<em> Denote the Right Multiplier by Right_M </em>
<em> Denote the Left Deniminator by L_Deno </em>
<em> Denote the Right Multiplier by R_Deno </em>
<em />
<em> Left_M = L.C.M / L_Deno = 1</em>
<em />
<em> Right_M = L.C.M / R_Deno = 2</em>
<em />
<em />
<em>Making Equivalent Fractions :</em>
<em> 9.3 Rewrite the two fractions into equivalent fractions</em>
<em />
<em>Two fractions are called equivalent if they have the same numeric value.</em>
<em />
<em>For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.</em>
<em />
<em>To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.</em>
<em />
<em> L. Mult. • L. Num. 837</em>
<em> —————————————————— = ———</em>
<em> L.C.M 50 </em>
<em />
<em> R. Mult. • R. Num. 279 • 2</em>
<em> —————————————————— = ———————</em>
<em> L.C.M 50 </em>
<em>Adding fractions that have a common denominator :</em>
<em> 9.4 Adding up the two equivalent fractions</em>
<em>Add the two equivalent fractions which now have a common denominator</em>
<em />
<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>
<em />
<em> 837 - (279 • 2) 279</em>
<em> ——————————————— = ———</em>
<em> 50 50 </em>
<em>Equation at the end of step</em>
<em>9</em>
<em>:</em>
<em> 279 2883 81</em>
<em> (——— + ————) - ——</em>
<em> 50 50 25</em>
<em>STEP</em>
<em>10</em>
<em>:</em>
<em>Adding fractions which have a common denominator</em>
<em> 10.1 Adding fractions which have a common denominator</em>
<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>
<em />
<em> 279 + 2883 1581</em>
<em> —————————— = ————</em>
<em> 50 25 </em>
<em>Equation at the end of step</em>
<em>10</em>
<em>:</em>
<em> 1581 81</em>
<em> ———— - ——</em>
<em> </em> 25 25
STEP
11
:
Adding fractions which have a common denominator
11.1 Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
1581 - (81) 60
——————————— = ——
25 1
Final result :
60