1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlekseyPX
3 years ago
15

Whats the proper abbreviation for twenty-five micrograms

Mathematics
1 answer:
scoundrel [369]3 years ago
7 0

Answer:

Hope this is what you are looking for! :)

You might be interested in
Which graph represents decreasing distance with increasing time? Distance Distance (my Distance (mi Distance (m) Time (min) Time
Leona [35]

Answer:

The second one

Step-by-step explanation:

5 0
4 years ago
Please answer this correctly
n200080 [17]

Answer:

Here you go

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
When rabbits were introduced to the continent of Australia they quickly multiplied and spread across the continent since there w
Lady bird [3.3K]

Answer:

a. y=6(1.7472)^x

b. y=6e^{0.558t}

c.13.3 months

Step-by-step explanation:

a.-Given the first term  at t_0 is 6 and the second term at t_3 is 32.

-Let's take rabbit population as a function of time to be

y=ab^x

where y is the population at time x and a the initial population at t_0\\

#We substitute our values to calculate the value of the constant b:

y_x=ab^x\\\\y_3=ab^3\\\\32=6b^3\\\\b=1.472

#Replace b in the population function:

y=ab^x, b=1.7472,a=6\\\\\therefore y=6(1.7472)^x

Hence, the regression for the rabbit population as a function of time x is y=6(1.7472)^x

b. The exponential function in terms of base e is usually expressed as:

A=A_0e^{kt}

Where:

A_0-is the initial population at t_o

A-is the population at time t.

k-is the  exponential growth constant.

e- the exponent

Our function in terms of base exponent is rewritten as:

y=A_0e^{kt}

#Substitute with actual figures to solve for t:

y=A_0e^{kt}, y=32, xt=3, A_0=6\\\\32=6e^{3k}\\\\3k=In (32/6)\\\\k=0.5580

Hence, the regression equation in terms of base e is y=6e^{0.558t}

c. We substitute y with any number higher than 10,000 to estimate the time for the rabbits to exceed 10,000.

-We know that y=6e^{0.558t}.

Therefore we calculate t as(take y=10001):

y=6e^{0.558t}, y=10001\\\\10001=6e^{0.558t}\\\\1666.8333=e^{0.558t}\\\\0.558t= In 1666.8333\\\\t=13.2951

Hence, it takes approximately 13.3 months for the population to exceed 10000

3 0
4 years ago
Write an equation for the total water usage, U, at the park this year in terms of x, the number of special events the park has h
Hoochie [10]

Answer:

U = 16206 + 22.2x

Step-by-step explanation:

This year, water usage has increased by 20% for both regular days and special events.. Write an equation for the total water usage, U, at the park this year in terms of x, the number of special events the park has hosted

Solution:

Last year regular usage of water was 13505 gallons, where as it was 18.5 gallons per special event. Let us assume that there were x special invents, hence:

The total usage for last year = 13505 + 18.5x

This year, the total usage (U) increased by 20%, hence:

Total usage for this year (U) = total usage for last year + 20% of total usage for last year

U = (13505 + 18.5x) + 0.2(13505 + 18.5x)

U = 13505 + 18.5x + 2701 + 3.7x

U = 16206 + 22.2x

8 0
3 years ago
2.7·6.2–9.3·1.2+6.2·9.3–1.2·2.7 not pemdas
antiseptic1488 [7]

<em></em>

<em>60</em>

<em>See steps</em>

<em>Step by Step Solution:</em>

<em>More Icon</em>

<em>Reformatting the input :</em>

<em>Changes made to your input should not affect the solution:</em>

<em />

<em>(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)</em>

<em />

<em>STEP</em>

<em>1</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>1</em>

<em>:</em>

<em>     27 62   93 12    62 93    12 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(——•——)</em>

<em>     10 10   10 10    10 10    10 10</em>

<em>STEP</em>

<em>2</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>2</em>

<em>:</em>

<em>     27 62   93 12    62 93    6 27</em>

<em>  (((——•——)-(——•——))+(——•——))-(—•——)</em>

<em>     10 10   10 10    10 10    5 10</em>

<em>STEP</em>

<em>3</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>3</em>

<em>:</em>

<em>     27 62   93 12    62 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    10 10   25</em>

<em>STEP</em>

<em>4</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>4</em>

<em>:</em>

<em>     27 62   93 12    31 93   81</em>

<em>  (((——•——)-(——•——))+(——•——))-——</em>

<em>     10 10   10 10    5  10   25</em>

<em>STEP</em>

<em>5</em>

<em>:</em>

<em>            6</em>

<em> Simplify   —</em>

<em>            5</em>

<em>Equation at the end of step</em>

<em>5</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>6</em>

<em>:</em>

<em>            93</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>6</em>

<em>:</em>

<em>     27 62   93 6   2883  81</em>

<em>  (((——•——)-(——•—))+————)-——</em>

<em>     10 10   10 5    50   25</em>

<em>STEP</em>

<em>7</em>

<em>:</em>

<em>            31</em>

<em> Simplify   ——</em>

<em>            5 </em>

<em>Equation at the end of step</em>

<em>7</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>8</em>

<em>:</em>

<em>            27</em>

<em> Simplify   ——</em>

<em>            10</em>

<em>Equation at the end of step</em>

<em>8</em>

<em>:</em>

<em>     27   31     279     2883     81</em>

<em>  (((—— • ——) -  ———) +  ————) -  ——</em>

<em>     10   5      25       50      25</em>

<em>STEP</em>

<em>9</em>

<em>:</em>

<em>Calculating the Least Common Multiple</em>

<em> 9.1    Find the Least Common Multiple</em>

<em />

<em>      The left denominator is :       50 </em>

<em />

<em>      The right denominator is :       25 </em>

<em />

<em>        Number of times each prime factor</em>

<em>        appears in the factorization of:</em>

<em> Prime </em>

<em> Factor   Left </em>

<em> Denominator   Right </em>

<em> Denominator   L.C.M = Max </em>

<em> {Left,Right} </em>

<em>2 1 0 1</em>

<em>5 2 2 2</em>

<em> Product of all </em>

<em> Prime Factors  50 25 50</em>

<em />

<em>      Least Common Multiple:</em>

<em>      50 </em>

<em />

<em>Calculating Multipliers :</em>

<em> 9.2    Calculate multipliers for the two fractions</em>

<em />

<em />

<em>    Denote the Least Common Multiple by  L.C.M </em>

<em>    Denote the Left Multiplier by  Left_M </em>

<em>    Denote the Right Multiplier by  Right_M </em>

<em>    Denote the Left Deniminator by  L_Deno </em>

<em>    Denote the Right Multiplier by  R_Deno </em>

<em />

<em>   Left_M = L.C.M / L_Deno = 1</em>

<em />

<em>   Right_M = L.C.M / R_Deno = 2</em>

<em />

<em />

<em>Making Equivalent Fractions :</em>

<em> 9.3      Rewrite the two fractions into equivalent fractions</em>

<em />

<em>Two fractions are called equivalent if they have the same numeric value.</em>

<em />

<em>For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.</em>

<em />

<em>To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.</em>

<em />

<em>   L. Mult. • L. Num.      837</em>

<em>   ——————————————————  =   ———</em>

<em>         L.C.M             50 </em>

<em />

<em>   R. Mult. • R. Num.      279 • 2</em>

<em>   ——————————————————  =   ———————</em>

<em>         L.C.M               50   </em>

<em>Adding fractions that have a common denominator :</em>

<em> 9.4       Adding up the two equivalent fractions</em>

<em>Add the two equivalent fractions which now have a common denominator</em>

<em />

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 837 - (279 • 2)     279</em>

<em> ———————————————  =  ———</em>

<em>       50            50 </em>

<em>Equation at the end of step</em>

<em>9</em>

<em>:</em>

<em>   279    2883     81</em>

<em>  (——— +  ————) -  ——</em>

<em>   50      50      25</em>

<em>STEP</em>

<em>10</em>

<em>:</em>

<em>Adding fractions which have a common denominator</em>

<em> 10.1       Adding fractions which have a common denominator</em>

<em>Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:</em>

<em />

<em> 279 + 2883     1581</em>

<em> ——————————  =  ————</em>

<em>     50          25 </em>

<em>Equation at the end of step</em>

<em>10</em>

<em>:</em>

<em>  1581    81</em>

<em>  ———— -  ——</em>

<em> </em>  25     25

STEP

11

:

Adding fractions which have a common denominator

11.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81)     60

———————————  =  ——

    25          1

Final result :

 60

7 0
3 years ago
Other questions:
  • Find the surface area of the regular pyramid. Write your answer as a decimal. (solved)
    5·1 answer
  • The administration of a large university is interested in learning about the types of wellness programs that would interest its
    7·1 answer
  • The sum of 10 and a number y is equal to 18
    5·1 answer
  • In triangle ABC how log is side c if A= 103 C=17 and a=21
    12·1 answer
  • What is x*x=15? (Basically make an equation that equals up to 15.)
    14·1 answer
  • First question!!! Very simple but I don’t get it. WORTH 25 PTS
    11·2 answers
  • Halsey invested $2,000 in a simple interest savings account earning 4.5% interest in a year. What will be her balance in the acc
    11·1 answer
  • Quick question! Will give brainliest!
    6·2 answers
  • Please help me this is so hard to me and you would be a life saver have a good day and please me nice especially to yourself too
    14·1 answer
  • Chris needs a clever pattern for Math class tomorrow. He comes up with this pattern: 8, 4, 12, 6, 16, 8, 20, 10, ___, __.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!