Answer:
The population mean of at least one treatment effect are different.
Step-by-step explanation:
An analysis of variance (ANOVA) is conducted in order to determine if there are significant differences between the values of the population mean with respect to the response variable for the domains that under the effects of different treatments. A low p-value leads to reject the null hypothesis of the following hypothesis system:

Rejecting H0 means that this hypothesis is false and, in turn, allows us to conclude that the population mean of one of the domains is different from the others.
Answer:
Slope = 
Step-by-step explanation:
Slope of a straight line passing two points
and
is given by the formula,
m = 
From the graph attached,
Line is passing through two points (20, 5) and (80, 20),
Therefore, slope of the line will be,
m = 
m = 
The slope is
.
Answer:
a)0.7
b) 10.03
c) 0.0801
Step-by-step explanation:
Rate of return Probability
9.5 0.1
9.8 0.2
10 0.3
10.2 0.3
10.6 0.1
a.
P(Rate of return is at least 10%)=P(R=10)+P(R=10.2)+P(R=10.6)
P(Rate of return is at least 10%)=0.3+0.3+0.1
P(Rate of return is at least 10%)=0.7
b)
Expected rate of return=E(x)=sum(x*p(x))
Rate of return(x) Probability(p(x)) x*p(x)
9.5 0.1 0.95
9.8 0.2 1.96
10 0.3 3
10.2 0.3 3.06
10.6 0.1 1.06
Expected rate of return=E(x)=sum(x*p(x))
Expected rate of return=0.95+1.96+3+3.06+1.06=10.03
c)
variance of the rate of return=V(x)=![sum(x^2p(x))-[sum(x*p(x))]^2](https://tex.z-dn.net/?f=sum%28x%5E2p%28x%29%29-%5Bsum%28x%2Ap%28x%29%29%5D%5E2)
Rate of return(x) Probability(p(x)) x*p(x) x²*p(x)
9.5 0.1 0.95 9.025
9.8 0.2 1.96 19.208
10 0.3 3 30
10.2 0.3 3.06 31.212
10.6 0.1 1.06 11.236
sum[x²*p(x)]=9.025+19.208+30+31.212+11.236=100.681
variance of the rate of return=V(x)=sum(x²*p(x))-[sum(x*p(x))]²
variance of the rate of return=V(x)=100.681-(10.03)²
variance of the rate of return=V(x)=100.681-100.6009
variance of the rate of return=V(x)=0.0801
Answer:
B
Step-by-step explanation: