This is a homogenous mixture because you cannot differentiate between the members of the mixture. A technique might be heating them until one melts and evaporates due to different boiling temperatures, or mixing them together with fluids that would dissolve one, yet keep the other one whole.
Answer:
we find the chemical equilibrium constant by balancing the number of reactant and products
Explanation:
and after balancing using formula (KC) = Ratio of product / reactants
Answer:
a. H2S(g)/t = 1.48 mol/s
CS2(g)/t = 0.740mol/s
H2(g)/t = 2.96mol/s
b.
Ptot /t = 981torr/min
Explanation:
a. Based on the reaction:
CH4(g) + 2 H2S(g) → CS2(g) + 4 H2(g)
<em>1 mole of CH4 reacts with 2 moles of H2S producing 1 mole of CS2 and 4 moles of 4H2</em>
<em />
If CH4 decreases at the rate of 0.740mol/s, H2S decreases twice faster, that is 0.740mol/s = 1.48 mol/s
CS2 is produced with the same rate of CH4 because 1 mole of CH4 produce 1 mole of CS2 = 0.740mol/s
The H2 is produced four times faster than CH4 is decreased, that is:
0.740mol/s * 4 = 2.96mol/s
b. With the reaction:
2 NH3(g) → N2(g) + 3 H2(g)
2 moles of ammonia are consumed whereas 1 mole of N2 and 3 moles of H2 are produced.
That means 2 moles of gas are consumed and 4 moles of gas are produced.
If the NH3 decreases at a rate of 327torr/min, the gases are produced in a rate twice faster. That is 327torr/min*2 =
654torr/min
The rate of change of the total pressure is rate of reactants + rate of products:
654torr/min + 327torr/min =
981torr/min
If the balanced equation reads:
2N2 + O2 ———> 2N2O
You should have 1.72 moles of N2.