The statement which best explains why carbon is present in so many kinds of molecules is because <u>it can form four covalent bonds.
<em /></u>It isn't rare on Earth, so A is incorrect. It has valence electrons, so C is incorrect. It cannot become an ion, so D is incorrect.<u>
</u>
The answer is the process in which carbon dioxide is used also forms glucose.
Glucose is a simple sugar with the molecular formula C₆H₁₂O₆. Glucose is the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using energy from sunlight.
The question is incomplete. The complete question is attached below.
Answer:
1. DNA is the polymer of deoxyribonucleotides that contain the nitrogenous base, pentose sugar and phosphate group. The phosphate is attached with the 3 C position of the deoxyribose sugar. This leads to teh formation of phosphodiester bond.
2. The DNA backbone consists of phosphate and sugar. The nitrogenous bases are inserted inside the DNA molecule. These nitrogenous bases are linked together by the hydrogen bonds.
3. The adenine binds requires two hydrogen bonds to bind with thymine. This provide complementary nature to the DNA molecule. Uracil is present instead of thymine in RNA .
4. The guanine binds requires three hydrogen bonds to bind with cytosine. More amount of energy is required to break their bonds.
Answer:
I think it will be C (viewpoint)