1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vera_Pavlovna [14]
4 years ago
10

Kelsie works at a bicycle shop as a salesperson. She records the number of bicycles she sells daily. Here is the probability dis

tribution of B = the number of bicycles Kelsie sells on a randomly selected day, and T the time she spends filling out daily sales reports. 2 B = # of bicycles sold T = time (minutes) Probability 40 20 10 0.05 0.15 0.50 0.30
a) Calculate E(B)

b) Calculate the mean time she spends filling out daily reports.

c) Calculate the standard deviation for both random variables.
Mathematics
1 answer:
Andru [333]4 years ago
7 0

Answer:

a) E(B)= \sum_{i=1}^n B_i P(B_i) =0*0.3+1*0.5+2*0.15+ 3*0.05=0.95

b) E(T)= \sum_{i=1}^n T_i P(T_i) =10*0.3+20*0.5+30*0.15+ 40*0.05=19.5

c) E(B^2)= \sum_{i=1}^n B^2_i P(B_i) =0^2 *0.3+1^2 *0.5+2^2 *0.15+ 3^2 *0.05=1.55

And the variance is given by:

Var(B) = E(B^2) -[E(B)]^2 = 1.55- [0.95]^2 =0.6475

And the deviation would be Sd(B) = \sqrt{0.6475}=0.8047

E(T^2)= \sum_{i=1}^n T^2_i P(T_i) =10^2 *0.3+20^2 *0.5+30^2 *0.15+ 40^2 *0.05=445

And the variance is given by:

Var(T) = E(T^2) -[E(T)]^2 = 445- [19.5]^2 =64.75

And the deviation would be Sd(T) = \sqrt{64.75}=8.047

Step-by-step explanation:

Previous concepts

In statistics and probability analysis, the expected value "is calculated by multiplying each of the possible outcomes by the likelihood each outcome will occur and then summing all of those values".  

The variance of a random variable Var(X) is the expected value of the squared deviation from the mean of X, E(X).  

And the standard deviation of a random variable X is just the square root of the variance.

Solution to the problem  

Part a

For this case we have the following info:

B            0            1             2              3

____________________________________

T           10           20          30            40

____________________________________

P           0.3          0.5        0.15          0.05

____________________________________

And we can calculate the expected value for the random variable B like this:

E(B)= \sum_{i=1}^n B_i P(B_i) =0*0.3+1*0.5+2*0.15+ 3*0.05=0.95

Part b

Similar to part a we can find the expected value for the random variable T like this:

E(T)= \sum_{i=1}^n T_i P(T_i) =10*0.3+20*0.5+30*0.15+ 40*0.05=19.5

Part c

In order to find the variance for B we need to calculate the second moment given by:

E(B^2)= \sum_{i=1}^n B^2_i P(B_i) =0^2 *0.3+1^2 *0.5+2^2 *0.15+ 3^2 *0.05=1.55

And the variance is given by:

Var(B) = E(B^2) -[E(B)]^2 = 1.55- [0.95]^2 =0.6475

And the deviation would be Sd(B) = \sqrt{0.6475}=0.8047

Similar for the random variable T we have:

E(T^2)= \sum_{i=1}^n T^2_i P(T_i) =10^2 *0.3+20^2 *0.5+30^2 *0.15+ 40^2 *0.05=445

And the variance is given by:

Var(T) = E(T^2) -[E(T)]^2 = 445- [19.5]^2 =64.75

And the deviation would be Sd(B) = \sqrt{64.75}=8.047

You might be interested in
Plz help It’s important
denis-greek [22]

Answer:

do 24 points i know it very well

8 0
3 years ago
Find the roots of the following equations.<br> a) 4x+9=34<br> b) (x-4)(x+2)=0<br> c) 2x^2-6x+4=0
Masteriza [31]
A. 4x + 9 = 34
    <u>      - 9   - 9</u>
          <u>4x</u> = <u>25</u>
           4      4
            x = 6.25

B. (x - 4)(x + 2) = 0
    x - 4 = 0    U    x + 2 = 0
    <u>  + 4 + 4</u>          <u>    - 2  - 2</u>
         x = 4                 x = -2

C.          2x² - 6x + 4 = 0
    2(x²) - 2(3x) + 2(2) = 0
            <u>2(x² - 3x + 2)</u> = <u>0</u>
                      2             2
                x² - 3x + 2 = 0
                x = <u>-(-3) +/- √((-3)² - 4(1)(2))</u>
                                      2(1)
                x = <u>3 +/- √(9 - 8)</u>
                               2
                x = <u>3 +/- √(1)
</u>                            2<u>
</u>                x =<u> 3 +/- 1
</u>                          2
                x = <u>3 + 1</u>    U    x = <u>3 - 1</u>
                         2                      2
                x = <u>4</u>                 x = <u>2</u>
                      2                       2
                x = 2                 x = 1
<u />
7 0
3 years ago
Square root of 28<br><img src="https://tex.z-dn.net/?f=%20%5Csqrt%7B28%7D%20" id="TexFormula1" title=" \sqrt{28} " alt=" \sqrt{2
lidiya [134]
The square root of 5.29150262213

4 0
4 years ago
2|x/2+3|=1, solve for x, there is two answers.<br><br>please help asap I will give brainiest<br>​
xxMikexx [17]

Answer: -5 and -7

Step-by-step explanation:

|\frac{x}{2}+3| = \frac{1}{2}

It has 2 cases

the first case ;

\frac{x}{2} + 3 = \frac{1}{2}

\frac{x}{2} = \frac{-5}{2}

x = -5

the second case;

\frac{x}{2} + 3 = \frac{-1}{2}

\frac{x}{2} = \frac{-7}{2}

x = -7

please give me a brainliest answer

5 0
3 years ago
Yosef typed a 48-word paragraph in 1/3 minute. What is his typing speed, in words per minute? I’m desperate please help me
AlexFokin [52]

Answer:

54 Words Per Minute

Hope I helped!

8 0
3 years ago
Other questions:
  • a group of 19 students want to see the show at the planetarium. $11 for each student who is a member of the planetarium's freque
    12·2 answers
  • Use the drop down menus to complete the statements to match the information shown<br> by the graph.
    10·2 answers
  • How do u write 2 and four sevenths as an improper fraction
    14·2 answers
  • Find the mean number of calories for the hamburgers<br>320<br>280<br>280<br>250<br>270
    11·2 answers
  • Please help don't know how to do
    8·1 answer
  • I will give brainliest to the right answer&lt;3
    14·1 answer
  • PLEASE I NEED HELP WITH MATH!!!
    6·1 answer
  • I have a question about this fraction question​
    10·1 answer
  • 5 stars on your answer. And a "thank you".
    11·2 answers
  • Express your answer in scientific notation. 0.00045-2.5x10^-5​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!