Answer:
The Area of the composite figure would be 76.26 in^2
Step-by-step explanation:
<u>According to the Figure Given:</u>
Total Horizontal Distance = 14 in
Length = 6 in
<u>To Find :</u>
The Area of the composite figure
<u>Solution:</u>
Firstly we need to find the area of Rectangular part.
So We know that,
![\boxed{ \rm \: Area \: of \: Rectangle = Length×Breadth}](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5Crm%20%5C%3A%20Area%20%20%5C%3A%20%20of%20%5C%3A%20%20Rectangle%20%3D%20Length%C3%97Breadth%7D)
Here, Length is 6 in but the breadth is unknown.
To Find out the breadth, we’ll use this formula:
![\boxed{\rm \: Breadth = total \: distance - Radius}](https://tex.z-dn.net/?f=%20%5Cboxed%7B%5Crm%20%5C%3A%20Breadth%20%3D%20total%20%20%5C%3A%20distance%20-%20Radius%7D)
According to the Figure, we can see one side of a rectangle and radius of the circle are common, hence,
![\longrightarrow\rm \: Length \: of \: the \: circle = Radius](https://tex.z-dn.net/?f=%20%5Clongrightarrow%5Crm%20%5C%3A%20Length%20%5C%3A%20%20of%20%5C%3A%20%20the%20%20%5C%3A%20circle%20%3D%20Radius)
![\longrightarrow \rm \: 6 \: in = radius](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Crm%20%5C%3A%206%20%5C%3A%20in%20%20%20%3D%20radius)
Hence Radius is 6 in.
So Substitute the value of Total distance and Radius:
- Total Horizontal Distance= 14
- Radius = 6
![\longrightarrow\rm \: Breadth = 14-6](https://tex.z-dn.net/?f=%20%5Clongrightarrow%5Crm%20%5C%3A%20Breadth%20%3D%2014-6)
![\longrightarrow\rm \: Breadth = 8 \: in](https://tex.z-dn.net/?f=%20%5Clongrightarrow%5Crm%20%5C%3A%20Breadth%20%3D%208%20%5C%3A%20in)
Hence, the Breadth is 8 in.
Then, Substitute the values of Length and Breadth in the formula of Rectangle :
![\longrightarrow\rm \: Area \: of \: Rectangle = 6 \times 8](https://tex.z-dn.net/?f=%20%5Clongrightarrow%5Crm%20%5C%3A%20Area%20%5C%3A%20%20of%20%20%5C%3A%20Rectangle%20%3D%206%20%5Ctimes%208)
![\longrightarrow \rm \: Area \: of \: Rectangle = 48 \: in {}^{2}](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Crm%20%5C%3A%20Area%20%5C%3A%20%20of%20%20%5C%3A%20Rectangle%20%3D%2048%20%5C%3A%20in%20%7B%7D%5E%7B2%7D%20)
Then, We need to find the area of Quarter circle :
We know that,
![\boxed{\rm Area_{(Quarter \; Circle) } = \cfrac{\pi{r} {}^{2} }{4}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Crm%20Area_%7B%28Quarter%20%5C%3B%20Circle%29%20%7D%20%20%3D%20%5Ccfrac%7B%5Cpi%7Br%7D%20%7B%7D%5E%7B2%7D%20%7D%7B4%7D%7D%20)
Now Substitute their values:
![\longrightarrow\rm Area_{(Quarter \; Circle) } = \cfrac{3.14 \times 6 {}^{2} }{4}](https://tex.z-dn.net/?f=%5Clongrightarrow%5Crm%20Area_%7B%28Quarter%20%5C%3B%20Circle%29%20%7D%20%3D%20%20%5Ccfrac%7B3.14%20%5Ctimes%206%20%7B%7D%5E%7B2%7D%20%7D%7B4%7D%20)
Solve it.
![\longrightarrow\rm Area_{(Quarter \; Circle) } = \cfrac{3.14 \times 36}{4}](https://tex.z-dn.net/?f=%5Clongrightarrow%5Crm%20Area_%7B%28Quarter%20%5C%3B%20Circle%29%20%7D%20%3D%20%20%5Ccfrac%7B3.14%20%5Ctimes%2036%7D%7B4%7D%20)
![\longrightarrow\rm Area_{(Quarter \; Circle) } = \cfrac{3.14 \times \cancel{{36} } \: ^{9} }{ \cancel4}](https://tex.z-dn.net/?f=%5Clongrightarrow%5Crm%20Area_%7B%28Quarter%20%5C%3B%20Circle%29%20%7D%20%3D%20%20%5Ccfrac%7B3.14%20%5Ctimes%20%5Ccancel%7B%7B36%7D%20%7D%20%5C%3A%20%5E%7B9%7D%20%7D%7B%20%5Ccancel4%7D%20)
![\longrightarrow\rm Area_{(Quarter \; Circle)} =3.14 \times 9](https://tex.z-dn.net/?f=%5Clongrightarrow%5Crm%20Area_%7B%28Quarter%20%5C%3B%20Circle%29%7D%20%3D3.14%20%5Ctimes%209)
![\longrightarrow\rm Area_{(Quarter \; Circle) } = 28.26 \: {in}^{2}](https://tex.z-dn.net/?f=%5Clongrightarrow%5Crm%20Area_%7B%28Quarter%20%5C%3B%20Circle%29%20%7D%20%3D%2028.26%20%5C%3A%20%20%7Bin%7D%5E%7B2%7D%20)
Now we can Find out the total Area of composite figure:
We know that,
![\boxed{ \rm \: Area_{(Composite Figure)} =Area_{(rectangle)}+ Area_{ (Quarter Circle)}}](https://tex.z-dn.net/?f=%5Cboxed%7B%20%5Crm%20%5C%3A%20Area_%7B%28Composite%20Figure%29%7D%20%3DArea_%7B%28rectangle%29%7D%2B%20Area_%7B%20%28Quarter%20Circle%29%7D%7D)
So Substitute their values:
= 48
= 28.26
![\longrightarrow \rm \: Area_{(Composite Figure)} =48 + 28 .26](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Crm%20%5C%3A%20Area_%7B%28Composite%20Figure%29%7D%20%3D48%20%2B%2028%20.26)
Solve it.
![\longrightarrow \rm \: Area_{(Composite Figure)} =\boxed{\tt 76.26 \:\rm in {}^{2}}](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Crm%20%5C%3A%20Area_%7B%28Composite%20Figure%29%7D%20%3D%5Cboxed%7B%5Ctt%2076.26%20%5C%3A%5Crm%20in%20%7B%7D%5E%7B2%7D%7D%20)
Hence, the area of the composite figure would be 76.26 in² or 76.26 sq. in.
![\rule{225pt}{2pt}](https://tex.z-dn.net/?f=%20%5Crule%7B225pt%7D%7B2pt%7D)
I hope this helps!