The reflection of BC over I is shown below.
<h3>
What is reflection?</h3>
- A reflection is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is known as the reflection's axis (in dimension 2) or plane (in dimension 3).
- A figure's mirror image in the axis or plane of reflection is its image by reflection.
See the attached figure for a better explanation:
1. By the unique line postulate, you can draw only one line segment: BC
- Since only one line can be drawn between two distinct points.
2. Using the definition of reflection, reflect BC over l.
- To find the line segment which reflects BC over l, we will use the definition of reflection.
3. By the definition of reflection, C is the image of itself and A is the image of B.
- Definition of reflection says the figure about a line is transformed to form the mirror image.
- Now, the CD is the perpendicular bisector of AB so A and B are equidistant from D forming a mirror image of each other.
4. Since reflections preserve length, AC = BC
- In Reflection the figure is transformed to form a mirror image.
- Hence the length will be preserved in case of reflection.
Therefore, the reflection of BC over I is shown.
Know more about reflection here:
brainly.com/question/1908648
#SPJ4
The question you are looking for is here:
C is a point on the perpendicular bisector, l, of AB. Prove: AC = BC Use the drop-down menus to complete the proof. By the unique line postulate, you can draw only one segment, Using the definition of, reflect BC over l. By the definition of reflection, C is the image of itself and is the image of B. Since reflections preserve , AC = BC.
They both saw the same amount because 6+3 = 9 and 3+6 = 9
H(t) = -16t² + 60t + 95
g(t) = 20 + 38.7t
h(1) = -16(1²) + 60(1) + 95 = -16 + 60 + 95 = -16 + 155 = 139
h(2) = -16(2²) + 60(2) + 95 = -16(4) + 120 + 95 = -64 + 215 = 151
h(3) = -16(3²) + 60(3) + 95 = -16(9) + 180 + 95 = -144 + 275 = 131
h(4) = -16(4²) + 60(4) + 95 = -16(16) + 240 + 95 = -256 + 335 = 79
g(1) = 20 + 38.7(1) = 20 + 38.7 = 58.7
g(2) = 20 + 38.7(2) = 20 + 77.4 = 97.4
g(3) = 20 + 38.7(3) = 20 + 116.1 = 136.1
g(4) = 20 + 38.7(4) = 20 + 154.8 = 174.8
Between 2 and 3 seconds.
The range of the 1st object is 151 to 131.
The range of the 2nd object is 97.4 to 136.1
h(t) = g(t) ⇒ 131 = 131
It means that the point where the 2 objects are equal is the point where the 1st object is falling down while the 2nd object is still going up.
Alex has $14, Barry has $12 and Carl has $9
I’m not sure if u mean it that way but the answer is correct