Answer:
The velocity of the players will be <u>2.88 m/s</u> in the <u>east</u> direction.
Explanation:
Let 'v' be the velocity of the players after collision.
Consider the east direction as positive direction.
Given:
Mass of the first player is,
kg
Initial velocity of the first player is,
m/s
Mass of the second player is,
kg
Initial velocity of the second player is,
m/s
In order to solve this problem we use the law of conservation of momentum which says that the total momentum must be conserved before and after the collision. So we can write:

Solving for v, we get:

Therefore, their velocity after the collision is 2.88 m/s.
The sign of the velocity after collision is positive. So, the players will move in the east direction only after collision.
They verify scientific hypothesis by doing experiments do prove what their theory was.
Answer:
160.75 N
Explanation:
The downward velocity has no effect on the force situation, it is only changes in velocity (plus, of course, gravity, which is always there) that require a force. At constant velocity, the bottom spring s_3 is supporting its mass m_3 to balance gravity.
As the elevator slows, though, it also ends up slowing down the spring arrangement, too. However, because the stretching takes time, it means that some damped harmonic motion will be set up in the spring chain.
When the motion has finally damped out, the net force the bottom spring s3 exerts on m3 has two components--that of gravity and of the deceleration of the elevator:
F_3net = m3 * (g + a) = 10.5×(9.81+5.5)= 10.5×15.31= 160.75 N
Answer:
Perpendicular to the electric field and magnetic field
Explanation:
Electromagnetic waves are transverse waves composed by the perpendicular oscillating electric and magnetic fields.
EM waves have both Electrical and magnetic features.
they travel in the velocity of light (3*10⁸ ms⁻¹)
they does not require any media to travel. It has two perpendicular electric field and the magnetic field which are perpendicular to each other
They travel perpendicular to each of those electric and magnetic fields.