I think it's an hour and a half
Answer:
dJ = 1.7 m
Explanation:
The Equation of the Balancing the moments in the center of the seesaw is like this:
∑Mo = 0
Mo = F*d
Where:
∑Mo : Algebraic sum of moments in the center(o) of the balance
Mo : moment in the o point ( N*m)
F : Force ( N)
d : distancia of the force to the the o point ( N*m)
Data
mA = 60 kg : mass of the Anna
mJ = 70 kg : mass of theJon
dA = 2 m : Distance from Anna to the center of the seesaw
g: acceleration due to gravity
Calculation of the distance from Jon to the center of the seesaw (dJ)
∑Mo = 0 WA : Ana's weight , WJ : Jon's weight
W = m*g
(WA)(dA) - (WJ) (dJ) = 0
(mA*g)(dA) - (mJ*g)(dJ) = 0
We divide by g the equation:
(mA)(dA) - (mJ)(dJ)= 0
(mA)(dA) = (mJ)(dJ)


dJ = 1.7 m
Answer:
10
Explanation:
The decibel or decibel, is a unit that relates two values of sound pressure, and electrical power. the base unit is the bel, but given the amplitude but for practicality, a submultiple, the decibel, is used. It is a scalar expression .
Zero belios is the reference value used as a base, hence a bel is equivalent to 10 decibels and means that there is a power increase of 10 times over the reference value.
<span>An object roating at one revokution per second has an angular velocity of 360 degrees per second or 2pi radians per second. This is found by taking the number of revolutions over a period of time and than dividing by the chosen period of time to get the velocity. There are 360 degrees or 2pi radians in one revolution.</span>
The solution you should use is Hooke's law: F=-kx
It should have the same signs because they repel due to the stretch of the spring.
a. Since there is a constant energy within the spring, then Hooke's law will determine the possible algebraic signs. The solution should be
<span>F = kx
270 N/m x 0.38 m = 102.6 N
</span>
b. Then use Coulomb's law; F=kq1q2/r^2 to find the charges produced in the force.