Answer:
Explanation:
In this case we shall calculate rate of change of flux in the coli to calculate induced emf .
Flux through the coil = no of turns x area x magnetic field perpendicular to it
=34 x 2.25 x (3.95 )²x 10⁻⁴ Weber
= 1193.4 x 10⁻⁴Weber
Final flux through the coil after turn by 90°
= 1193.4 x 10⁻⁴ cos 90 ° =0
Change of flux
= 1193.4 x 10⁻⁴ weber.
Time taken = 0.335 s .
Average emf= Rate of change of flux
= change in flux / time
=1193.4 x 10⁻⁴ / .335
= 3562.4 x 10⁻⁴
356.24 x 10⁻³
=356.24 mV.
Current induced = emf induced / resistance
= 356.24/.780
= 456.71 mA.
The right answer is "Strong nuclear force"
Answer :
New force becomes, F' = 1.83 N
Explanation:
Let two point charges exert a force of 7.35 N force on each other. The electric force between two charges is given by :

are charges
r is the distance between charges if the distance between them is increased by a factor of 2, r' = 2r
New force is given by :




F' = 1.83 N
So, the new force between charges will be 1.83 N. Therefore, this is the required solution.
Answer:
(C) The impossibility of having a 100% efficient heat engine is always due to friction or other dissipative effects such as the system is perfectly designed or the material needed for the system design is not available.
Explanation:
The above option was never stated in the law
The answer is true I did that test befor