Answer:
Toxic effects
Chlorinated plastic can release harmful chemicals into the surrounding soil, which can then seep into groundwater or other surrounding water sources, and also the ecosystem. This can cause a range of potentially harmful effects on the species that drink the water.
Explanation:
I hope this helps
Answer:
48 amino acids
Explanation:
The wild type gene codes for a protein with 100 amino acids. One amino acid is encoded by one triplet code of the gene. This means that the wild type gene has a total 100 triplets or 300 nucleotides to code for a protein of 100 amino acid. Mutation in this protein has introduced the code "UAA" at the 49th codon. The code "UAA" is a stop codon. Therefore, the mRNA transcribed from the mutant allele would code for a protein having 48 amino acids as the protein synthesis will be stopped once the stop codon at the 49th position is read.
The correct answer to this question is this one: they lacked oxygen. The earliest organisms were completely heterotrophic in nature because of the reason that they lacked oxygen. <span>A heterotroph is an organism that cannot fix carbon and uses organic carbon for growth. </span>
The answer is; raccoons and rodents
Racoon will burrow in the soil or tree logs and form a den where they can litter. When threatened, the raccoon can retreat to its hideout or climb a tree. Rodents also scrawl the bottom of the forest finding food. They also love to burrow or hide in crevices of fallen tree trumps or rocks.
Answer:
Alcohol fermentation
Explanation:
When oxygen availability is low, the cell can't perform aerobic respiration to breakdown glucose. Instead, anaerobic respiration must be performed. This occurs in cells which consume large amounts of energy, such as muscle cells. Anaerobic respiration produces much less energy than aerobic respiration
One type of anaerobic respiration formed by yeast is called alcohol fermentation (also called ethanol fermentation). This begins with glycolysis, where one molecule of glucose is broke down into 2 molecules of pyruvate. The energy from this reaction generates 2 molecules of ATP, and converts NAD+ to NADH.
Then, the two molecules of pyruvate are further broke down into 2 acetaldehydes (releasing two molecules of carbon dioxide as a by-product). These two molecules of acetaldehyde are then converted into tw molecules of ethanol, using the H ions from NADH, converting it back to NAD+. See the attached picture
This process is taken advantage of to brew beer and wine.