Answer:
1) 7.256 mol Br2 (Cl2)/(Br2)
The Br2 cancels out, so we have 7.256(2)
This is 14.512.
2) Number of moles = mass / molar mass
Number of moles = 239.7 g/ 35.5 g/mol
Number of moles = 6.8 mol
BrCl=13.6 mol
13.6(11.5.357)
1568.9 g
3) Repeat the same process with problem 2, given that there are 6.022x10^23 atoms in a mole.
Explanation:
Br2 + Cl2 → 2BrCl
Answer is B- F has a smaller radius than F− because an additional electron causes greater repulsion in F− is the correct choice and the nuclear charge the radius of the anion increases.
Explanation: I hoped that helped!
Answer:
After 26.0s, the concentration of HI decreases from 0.310M to 0.0558M.
Explanation:
Based on the reaction of the problem, you have as general kinetic law for a first-order reaction:
ln[HI] = -kt + ln [HI]₀
<em>Where [HI] is actual concentration after time t, </em>
<em>k is rate constant </em>
<em>and [HI]₀ is initial concentration of the reactant.
</em>
Initial concentration of HI is 0.310M,
K is 0.0660s⁻¹,
And the actual concentration is 0.0558M:
ln[HI] = -kt + ln [HI]₀
ln[0.0558M] = -0.0660s⁻¹*t + ln [
0.310M]
-1.7148 = -0.0660s⁻¹*t
26.0s = t
<h3>After 26.0s, the concentration of HI decreases from 0.310M to 0.0558M</h3>
<em />
Answer:
Arteries
Explanation:
Arteries are blood vessels that carry blood away from the heart to the rest of the body.
Because carbon has two double bonds which is equal to 8 electrons so therefore the octet rule is fulfilled.