To solve this problem, we need to know that
arc length = r θ where θ is the central angle in radians.
We're given
r = 6 (units)
length of minor arc AB = 4pi
so we need to calculate the central angle, θ
Rearrange equation at the beginning,
θ = (arc length) / r = 4pi / 6 = 2pi /3
Answer: the central angle is 2pi/3 radians, or (2pi/3)*(180/pi) degrees = 120 degrees
Answer:
a
Step-by-step explanation:
Answer:
x = y = 22
Step-by-step explanation:
It would help to know your math course. Do you know any calculus? I'll assume not.
Equations
x + y = 44
Max = xy
Solution
y = 44 - x
Max = x (44 - x) Remove the brackets
Max = 44x - x^2 Use the distributive property to take out - 1 on the right.
Max = - (x^2 - 44x ) Complete the square inside the brackets.
Max = - (x^2 - 44x + (44/2)^2 ) + (44 / 2)^2 . You have to understand this step. What you have done is taken 1/2 the x term and squared it. You are trying to complete the square. You must compensate by adding that amount on the end of the equation. You add because of that minus sign outside the brackets. The number inside will be minus when the brackets are removed.
Max = -(x - 22)^2 + 484
The maximum occurs when x = 22. That's because - (x - 22) becomes 0.
If it is not zero it will be minus and that will subtract from 484
x + y = 44
xy = 484
When you solve this, you find that x = y = 22 If you need more detail, let me know.
The order of operations is used to order numerical expressions
7 × __ = 94
Divide by 7 on both side.
__ = 94 ÷ 7
Answer = 13 3/7