1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vovangra [49]
3 years ago
15

Solve the equation for x. x/3 = (2x + 3)/7

Mathematics
2 answers:
Lemur [1.5K]3 years ago
8 0

Answer:

<em>Our answer is </em>x=9<em></em>

Step-by-step explanation:

First we will rearrange so we have to divide by 7.

\frac{x}{3}= \frac{2x+3}{7}

Now we will cross multiply.

So...

x*7 \\3*2x+3

Our new equation will look like:

7x=6x+9

Now we have to isolate x.

So we have to subtract 6x from both sides.

7x-6=1x

and

6x-6x=0

Our new equation is:

1x=9

Now divide.

<em>Our answer is </em>x=9<em></em>

<em></em>

<em>Hope this helped!</em>

Olin [163]3 years ago
3 0
X = 3

First u cross multiply

7x =3(2x +3)
Multiply parentheses by 3


7x = 6x =9
Move variable to the left

7x - 6x =9
Collect the terms

x = 9
You might be interested in
Gloria purchased a hot chocolate with extra marshmallows for $4.59 before tax. She lives in Iceland where the sales tax rate is
dsp73
About ten cents. $4.68 total
8 0
3 years ago
If -y-2x^3=Y^2 then find D^2y/dx^2 at the point (-1,-2) in simplest form
algol13

Answer:

\frac{d^2y}{dx^2} = \frac{-4}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-y - 2x³ = y²

Rate of change of tangent line at point (-1, -2)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Basic Power Rule]:                                                  -y'-6x^2=2yy'
  2. [Algebra] Isolate <em>y'</em> terms:                                                                              -6x^2=2yy'+y'
  3. [Algebra] Factor <em>y'</em>:                                                                                       -6x^2=y'(2y+1)
  4. [Algebra] Isolate <em>y'</em>:                                                                                         \frac{-6x^2}{(2y+1)}=y'
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-6x^2}{(2y+1)}

<u>Step 3: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{-12x(2y+1)+6x^2(2y')}{(2y+1)^2}
  2. [Derivative] Simplify:                                                                                       y'' = \frac{-24xy-12x+12x^2y'}{(2y+1)^2}
  3. [Derivative] Back-Substitute <em>y'</em>:                                                                     y'' = \frac{-24xy-12x+12x^2(\frac{-6x^2}{2y+1} )}{(2y+1)^2}
  4. [Derivative] Simplify:                                                                                      y'' = \frac{-24xy-12x-\frac{72x^4}{2y+1} }{(2y+1)^2}

<u>Step 4: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em> and <em>y</em>:                                                                     y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(-1)^4}{2(-2)+1} }{(2(-2)+1)^2}
  2. [Pre-Algebra] Exponents:                                                                                      y''(-1,-2) = \frac{-24(-1)(-2)-12(-1)-\frac{72(1)}{2(-2)+1} }{(2(-2)+1)^2}
  3. [Pre-Algebra] Multiply:                                                                                   y''(-1,-2) = \frac{-48+12-\frac{72}{-4+1} }{(-4+1)^2}
  4. [Pre-Algebra] Add:                                                                                         y''(-1,-2) = \frac{-36-\frac{72}{-3} }{(-3)^2}
  5. [Pre-Algebra] Exponents:                                                                               y''(-1,-2) = \frac{-36-\frac{72}{-3} }{9}
  6. [Pre-Algebra] Divide:                                                                                      y''(-1,-2) = \frac{-36+24 }{9}
  7. [Pre-Algebra] Add:                                                                                          y''(-1,-2) = \frac{-12}{9}
  8. [Pre-Algebra] Simplify:                                                                                    y''(-1,-2) = \frac{-4}{3}
6 0
2 years ago
Five less than twelve times a number is represented by:
Paraphin [41]

Option ( 1 )

.....................

.....................

.....................

5 0
3 years ago
Five more than the product of a number and 9 is equal to 8
Zinaida [17]

Answer:

What is the question?

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
I'm having trouble filling this chart out and need some help please.​
777dan777 [17]

Answer:

Figure 1: complementary

figure 2: adjacent

figure 3: supplementary

figure5: supplementary

7 0
2 years ago
Other questions:
  • What is the surface area of the figure shown below?
    10·1 answer
  • Kyle a used 10 cups of raisins to make 5 batches of oatmeal raisin cookies. How many cups of raisins are in 1 batch of cookies?P
    9·2 answers
  • What was the value of the third check Tony deposited?
    15·1 answer
  • How does f(x) = 10x change over the interval from x = 5 to x = 6?
    6·2 answers
  • A small rural town has experienced a population decrease at a rate of 25 people every 5 years since 1970. If the population of t
    13·1 answer
  • How wide is a poster that has a length of 9/2 feet and area of 45/4 square feet?
    7·2 answers
  • A restaurant manager asks all of the customers this month to take an online survey (and get a free appetizer their next visit).
    5·1 answer
  • Could someone give me some advice?
    5·2 answers
  • Given the function h of x equals negative 2 times the square root of x, which statement is true about h(x)?
    15·1 answer
  • 56% of the students at a collage are from in-state. aIf 4,620 students are from instate how many students attend the collage
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!