Answer:
A
Step-by-step explanation:
Answer:
47/30
Step-by-step explanation:
2.35 * 2/3 =
= 2 35/100 * 2/3
= 2 7/20 * 2/3
= 47/20 * 2/3
= 94/60
= 47/30
Answer:
15 feet by 12 feet or 10 feet by 18 feet
Step-by-step explanation:
Answer:
Step-by-step explanation:
This is a narrower-than-normal absolute value graph, which is a v-shaped graph. It's pointy part, the vertex, lies at (2, -3) and it opens upwards without bounds along both the positive and negative x axes. Therefore, as x approaches negative infinity, f(x) or y (same thing) approaches positive infinity. As x approaches positive infinity, f(x) approaches positive infinity.
By definition of tangent,
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
Recall the double angle identities:
sin(2<em>θ</em>) = 2 sin(<em>θ</em>) cos(<em>θ</em>)
cos(2<em>θ</em>) = cos²(<em>θ</em>) - sin²(<em>θ</em>) = 2 cos²(<em>θ</em>) - 1
where the latter equality follows from the Pythagorean identity, cos²(<em>θ</em>) + sin²(<em>θ</em>) = 1. From this identity we can solve for the unknown value of sin(<em>θ</em>):
sin(<em>θ</em>) = ± √(1 - cos²(<em>θ</em>))
and the sign of sin(<em>θ</em>) is determined by the quadrant in which the angle terminates.
<em />
We're given that <em>θ</em> belongs to the third quadrant, for which both sin(<em>θ</em>) and cos(<em>θ</em>) are negative. So if cos(<em>θ</em>) = -4/5, we get
sin(<em>θ</em>) = - √(1 - (-4/5)²) = -3/5
Then
tan(2<em>θ</em>) = sin(2<em>θ</em>) / cos(2<em>θ</em>)
tan(2<em>θ</em>) = (2 sin(<em>θ</em>) cos(<em>θ</em>)) / (2 cos²(<em>θ</em>) - 1)
tan(2<em>θ</em>) = (2 (-3/5) (-4/5)) / (2 (-4/5)² - 1)
tan(2<em>θ</em>) = 24/7