Answer:
Impulse = 322.5[kg*m/s], the answer is D
Explanation:
This method it is based on the principle of momentum and the amount of movement; and used to solve problems involving strength, mass, speed and time.
If units of the SI are used, the magnitude of the impulse of a force is expressed in N * s. however, when remembering the definition of the newton.

Now replacing the values on the following equation that express the definition of impulse
![Impulse = Force * Time\\\\Impulse = 215 * 1.5 = 322.5 [kg*m/s]](https://tex.z-dn.net/?f=Impulse%20%3D%20Force%20%2A%20Time%5C%5C%5C%5CImpulse%20%3D%20215%20%2A%201.5%20%3D%20322.5%20%5Bkg%2Am%2Fs%5D)
Answer:
This experiment lets you repeat Galileo's experiment in a vacuum. The free fall of a coin and feather are compared, first in a tube full of air and then in a vacuum. With air resistance, the feathers fall more slowly. In a vacuum, the objects fall at the same rate independent of their respective masses.
Answer:
D. The state of motion of an object with mass
Explanation:
Specifically, momentum is mv, mass times velocity
Answer:
Plant
A Eukaryotic cell
Explanation:
Animal cells don’t have cell walls and prokaryotic cells don’t have nuclei
In 1913, Niels Bohr proposed a theory for the hydrogen atom based on quantum theory that energy is transferred only in certain well defined quantities. Electrons should move around the nucleus but only in prescribed orbits. When jumping from one orbit to another with lower energy, a light quantum is emitted.