-GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Given
A particle of mass m moving under the influence of a fixed mass's M, gravitational potential energy of formula -GMm/r, where r is the separation between the masses and G is the gravitational constant of the universe.
As the Gravity Potential energy of particle = -GMm/r
Total energy of particle = Kinetic energy + Potential Energy
As we know that
Kinetic energy = 1/2mv²
Also, v is equals to square root of GM/r
v = √GM/r
Put the value of v in the formula of kinetic energy
We get,
Kinetic Energy = GMm/2r
Total Energy = GMm/2r + (-GMm/r)
= GMm/2r - GMm/r
= -GMm/2r
Hence, -GMm/2r is the total energy of the mass m if it is in a circular orbit about mass M.
Learn more about Gravitational Potential Energy here brainly.com/question/15896499
#SPJ4
Answer:
4.3 * 10^28 kg
Explanation:
Given:
Period, T = 84s
Radius of satellite orbit, r = 8*10^6
Using the relation :
M = 4π²r³ / GT²
Where G = Gravitational constant, 6.67 * 10^-11
M = 4*π^2*(8*10^6)^3 / 6.67 * 10^-11 * 84^2
M = (20218.191872 * 10^18) / 47063.52 * 10^-11
M = 0.4295937 * 10^18 - (-11)
M = 0.4295937 * 10^29
M = 4.295937 * 10^28 kg
M = 4.3 * 10^28 kg
Mass of planet Nutron = 4.3 * 10^28 kg
Answer:
The Doppler shift may be helpful to determine the relative speed of an object by bouncing a wave (usually a radar wave) off the object and measuring the shift in the frequency of the wave.
Explanation:
Doppler shift helps to overcome a visual illusion block out irrelevant noises, locate sounds and see an object in very dim light by determining the relative speed of an object by bouncing a wave
Answer:
the growth of mycelial, by which reduction in carbohydrate level occurs in the medium. Because of this reduction in carbohydrate level
Explanation:
Answer:
<em>At constant mass, the acceleration of an object varies (</em><em>directly</em><em>) with the net external force applied. That is to say, that an object's acceleration increases as the force applied is (</em><em>increased</em><em>), but its acceleration decreases if the force applied is (</em><em>decreased</em><em>).</em>
Explanation:
<u>Mechanical Force
</u>
According to the second Newton's law, the acceleration of an object varies directly proportional to the external net force applied and inversely proportional to the mass of the object.
If the mass is constant, then the acceleration will vary in the same way as the force does.
Completing the sentences:
At constant mass, the acceleration of an object varies (directly) with the net external force applied. That is to say, that an object's acceleration increases as the force applied is (increased), but its acceleration decreases if the force applied is (decreased).