In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.
Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N
Friction can be bad by being too strong or too weak.
<span>Sometimes, when it is too strong, it decreases efficiency since some energy is wasted and turns to heat. Friction can also d</span><span>amage equipment/objects like when you slide it on the floor.
</span>
When friction is too weak, like for instance when there is black ice- our center of gravity is displaced too quickly and we can fall. Likewise, if there is a lot of slush on the ground, cars can slip and slide.