The kinetic energy of an object is given by

where m is the mass of the object and v its velocity.
For the car in the problem,

and

, so the kinetic energy of the car is

and as we can see, yes, the answer depends on the car's mass.
Answer:
70.15 Joule
Explanation:
mass of man, m = 70 kg
intial length, l = 11 m
extension, Δl = 1.5 m
Let K is the spring constant.
In the equilibrium position
mg = K l
70 x 9.8 = K x 11
K = 62.36 N/m
Potential energy stored, U = 0.5 x K x Δl²
U = 0.5 x 62.36 x 1.5 x 1.5
U = 70.15 Joule
Answer:
1g/cm3
Explanation:
volume of block is 3 cubed which is 27 cm3
we know density is m/v so d= 27g/27cm3
which is 1g/cm3
if my answer helps please mark as brainliest
Answer:
The answer is A. Cementing...
Explanation:
hope this helps
Answer:
The distance of stars and the earth can be averagely measured by using the knowledge of geometry to estimate the stellar parallax angle(p).
From the equation below, the stars distances can be calculated.
D = 1/p
Distance = 1/(parallax angle)
Stellar parallax can be used to determine the distance of stars from an observer, on the surface of the earth due to the motion of the observer. It is the relative or apparent angular displacement of the star, due to the displacement of the observer.
Explanation:
Parallax is the observed apparent change in the position of an object resulting from a change in the position of the observer. Specifically, in the case of astronomy it refers to the apparent displacement of a nearby star as seen from an observer on Earth.
The parallax of an object can be used to approximate the distance to an object using the formula:
D = 1/p
Where p is the parallax angle observed using geometry and D is the actual distance measured in parsecs. A parsec is defined as the distance at which an object has a parallax of 1 arcsecond. This distance is approximately 3.26 light years