1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
3 years ago
14

A tennis ball rolls off the edge of a table. the table is 0.55m tall and the tennis ball lands 0.12m away from the table.

Physics
1 answer:
k0ka [10]3 years ago
3 0

Answer:

v = 0.363 m/s

Explanation:

Given that,

The table is 0.55m tall and the tennis ball lands 0.12m away from the table.

Here, u = 0 (at rest) for initial vertical velocity as it rolls off the edge of a table.

Let t is the time to fall from the vertical height. So,

h=ut+\dfrac{1}{2}at^2\\\\t=\sqrt{\dfrac{2h}{g}} \\\\t=\sqrt{\dfrac{2\times 0.55}{9.8}} \\\\t=0.33\ s

It can be assumed to find the initial horizontal velocity of the tennis ball. It can be given by :

v_x=\dfrac{x}{t}\\\\v_x=\dfrac{0.12}{0.33}\\\\v_x=0.363\ m/s

Hence, the initial horizontal velocity is 0.363 m/s.

You might be interested in
At the moment t = 0, a 20.0 V battery is connected to a 5.00 mH coil and a 6.00 Ω resistor. (a) Immediately thereafter, how does
insens350 [35]

(a) On the coil: 20 V, on the resistor: 0 V

The sum of the potential difference across the coil and the potential difference across the resistor is equal to the voltage provided by the battery, V = 20 V:

V = V_R + V_L

The potential difference across the inductance is given by

V_L(t) = V e^{-\frac{t}{\tau}} (1)

where

\tau = \frac{L}{R}=\frac{0.005 H}{6.00 \Omega}=8.33\cdot 10^{-4} s is the time constant of the circuit

At time t=0,

V_L(0) = V e^0 = V = 20 V

So, all the potential difference is across the coil, therefore the potential difference across the resistor will be zero:

V_R = V-V_L = 20 V-20 V=0

(b) On the coil: 0 V, on the resistor: 20 V

Here we are analyzing the situation several seconds later, which means that we are analyzing the situation for

t >> \tau

Since \tau is at the order of less than milliseconds.

Using eq.(1), we see that for t >> \tau, the exponential becomes zero, and therefore the potential difference across the coil is zero:

V_L = 0

Therefore, the potential difference across the resistor will be

V_R = V-V_L = 20 V- 0 = 20 V

(c) Yes

The two voltages will be equal when:

V_L = V_R (2)

Reminding also that the sum of the two voltages must be equal to the voltage of the battery:

V=V_L +V_R

And rewriting this equation,

V_R = V-V_L

Substituting into (2) we find

V_L = V-V_L\\2V_L = V\\V_L=\frac{V}{2}=10 V

So, the two voltages will be equal when they are both equal to 10 V.

(d) at t=5.77\cdot 10^{-4}s

We said that the two voltages will be equal when

V_L=\frac{V}{2}

Using eq.(1), and this last equation, this means

V e^{-\frac{t}{\tau}} = \frac{V}{2}

And solving the equation for t, we find the time t at which the two voltages are equal:

e^{-\frac{t}{\tau}}=\frac{1}{2}\\-\frac{t}{\tau}=ln(1/2)\\t=-\tau ln(0.5)=-(8.33\cdot 10^{-4} s)ln(0.5)=5.77\cdot 10^{-4}s

(e-a) -19.2 V on the coil, 19.2 V on the resistor

Here we have that the current in the circuit is

I_0 = 3.20 A

The problem says this current is stable: this means that we are in a situation in which t>>\tau, so the coil has no longer influence on the circuit, which is operating as it is a normal circuit with only one resistor. Therefore, we can find the potential difference across the resistor using Ohm's law

V=I_0 R = (3.20 A)(6.0 \Omega)=19.2 V

Then the battery is removed from the circuit: this means that the coil will discharge through the resistor.

The voltage on the coil is given by

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

which means that it is maximum at the moment when the battery is disconnected, when t=0:

V_L(0)=.V

And V this time is the voltage across the resistor, 19.2 V (because the coil is now connected to the resistor, not to the battery). So, the voltage across the coil will be -19.2 V, and the voltage across the resistor will be the same in magnitude, 19.2 V (since the coil and the resistor are connected to the same points in the circuit): however, the signs of the potential difference will be opposite.

(e-b) 0 V on both

After several seconds,

t>>\tau

If we use this approximation into the formula

V_L(t) = -V e^{-\frac{t}{\tau}} (1)

We find that

V_L = 0

And since now the resistor is directly connected to the coil, the voltage in the resistor will be the same as the coil, so 0 V. This means that the coil has completely discharged, and current is no longer flowing through the circuit.

7 0
3 years ago
Find the rms speed of the molecules of a sample of n2 (diatomic nitrogen) gas at a temperature of 31.5°c.
Artemon [7]
The rms speed can be calculated using the following rule:
rms = sqrt ((3RT) / (M)) where:
R is the gas constant =  8.314 J/mol-K
T is the temperature = 31.5 + 273 = 304.5 degrees kelvin
M is the molar mass = 2*14 = 28 grams = 0.028 kg

Substitute with the givens to get the rms speed as follows:
rms speed = sqrt [(3*8.314*304.5) / (0.028)] = 520.811 m/sec
8 0
3 years ago
A. What did the neuron say to the muscle say? (Use your basic physiological knowledge, such as the function of
Romashka-Z-Leto [24]

Answer:

Somatic motor neurons originate in the central nervous system, project their axons to skeletal muscles (such as the muscles of the limbs, abdominal, and intercostal muscles), which are involved in locomotion.

Explanation:

Muscles move on commands from the brain. Single nerve cells in the spinal cord, called motor neurons, are the only way the brain connects to muscles. When a motor neuron inside the spinal cord fires, an impulse goes out from it to the muscles on a long, very thin extension of that single cell called an axon.

4 0
2 years ago
Cell phones do not work everywhere. There are places where your cell phone cannot get a signal
shusha [124]
There are probably no strong signals
5 0
3 years ago
Read 2 more answers
The force produced by gravity on a mass is called
Yakvenalex [24]

Answer:

gravitational force

weight

Explanation:

5 0
3 years ago
Other questions:
  • What is the density of a block of marble that occupies 236 cm3 and has a mass of 824 g? answer in units of g/cm3 ?
    15·1 answer
  • 2. What kinetic energy has a 1 tonne car travelling at 15 m/s?
    10·1 answer
  • A car possesses 20,000 units of momentum. what would be the car's new momentum if ... its velocity was doubled?
    12·1 answer
  • While driving his 600-kg ultra-compact electric car, a distracted driver starts crossing a drawbridge. Not realizing that the dr
    7·1 answer
  • A projectile is fired straight upward from the Earth's surface at the South Pole with an initial speed equal to one third the es
    13·1 answer
  • the force shown in figure 7-15 moves an object from x=0 to x=0.75 m. How much work is done by the force?
    11·1 answer
  • Help plsssssssssss I write it 100 time no one answer
    15·1 answer
  • To appreciate the strength of gravity, calculate the number of steel cables that would be required, in the absence of gravity, t
    7·1 answer
  • What is one of the forms of a gene called?
    6·2 answers
  • If an object moves with constant acceleration, its velocity must
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!